盐析法制备负载对乙酰氨基酚的乌龙茶S100纳米颗粒及表征

Ayesha Siddiqua Gazi, A. Sailaja
{"title":"盐析法制备负载对乙酰氨基酚的乌龙茶S100纳米颗粒及表征","authors":"Ayesha Siddiqua Gazi, A. Sailaja","doi":"10.4172/2329-6631.1000183","DOIUrl":null,"url":null,"abstract":"The aim of this study was to prepare Paracetamol loaded Eudragit S100 nanoparticles by salting out (SO) technique. Eudragit S100 (ED) was used as a polymer. Paracetamol and polymer were dissolved in ethanol at various drug-polymer ratios (1:1, 1:2 and 1:3), among three formulations 1:3 was found to be the best formulation with drug content of 80.3% and entrapment efficiency was found to be 99.8%. Loading capacity was found to be more for 1:3 formulation. Na.cmc was used as stabilizer and ZnSO4.7H2O was used as a salting out agent and ethanol were used as solvent.","PeriodicalId":15589,"journal":{"name":"Journal of Developing Drugs","volume":"14 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Preparation and Characterization of Paracetamol Loaded Eudragit S100 Nanoparticles by Salting Out Technique\",\"authors\":\"Ayesha Siddiqua Gazi, A. Sailaja\",\"doi\":\"10.4172/2329-6631.1000183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this study was to prepare Paracetamol loaded Eudragit S100 nanoparticles by salting out (SO) technique. Eudragit S100 (ED) was used as a polymer. Paracetamol and polymer were dissolved in ethanol at various drug-polymer ratios (1:1, 1:2 and 1:3), among three formulations 1:3 was found to be the best formulation with drug content of 80.3% and entrapment efficiency was found to be 99.8%. Loading capacity was found to be more for 1:3 formulation. Na.cmc was used as stabilizer and ZnSO4.7H2O was used as a salting out agent and ethanol were used as solvent.\",\"PeriodicalId\":15589,\"journal\":{\"name\":\"Journal of Developing Drugs\",\"volume\":\"14 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Developing Drugs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2329-6631.1000183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Developing Drugs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2329-6631.1000183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本研究的目的是采用盐析(SO)技术制备对乙酰氨基酚负载的乌龙茶S100纳米颗粒。采用Eudragit S100 (ED)作为聚合物。将扑热息痛和聚合物以不同的药聚合物比(1:1、1:2和1:3)溶于乙醇中,3种配方中以1:3为最佳配方,药物含量为80.3%,包封率为99.8%。发现1:3配方的承载能力更大。Na。以cmc为稳定剂,ZnSO4.7H2O为盐析剂,乙醇为溶剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preparation and Characterization of Paracetamol Loaded Eudragit S100 Nanoparticles by Salting Out Technique
The aim of this study was to prepare Paracetamol loaded Eudragit S100 nanoparticles by salting out (SO) technique. Eudragit S100 (ED) was used as a polymer. Paracetamol and polymer were dissolved in ethanol at various drug-polymer ratios (1:1, 1:2 and 1:3), among three formulations 1:3 was found to be the best formulation with drug content of 80.3% and entrapment efficiency was found to be 99.8%. Loading capacity was found to be more for 1:3 formulation. Na.cmc was used as stabilizer and ZnSO4.7H2O was used as a salting out agent and ethanol were used as solvent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信