用PID和滑模控制器控制各种路面的侧刷清扫车

IF 1.2 Q3 ENGINEERING, MECHANICAL
H. Thanh, Thang Viet, T. Duc, T. Quoc
{"title":"用PID和滑模控制器控制各种路面的侧刷清扫车","authors":"H. Thanh, Thang Viet, T. Duc, T. Quoc","doi":"10.5937/fme2303318h","DOIUrl":null,"url":null,"abstract":"This paper examines the side brush control technologies for a novelty semi-autonomous road sweeper design. This study proposes a side brush structure and offers a brush control solution to improve working efficiency and reduce abrasive brush. For the mechanical system using a parallelogram mechanism, the direction of movement when raising and lowering the brush is always parallel to the road surface. The modeling of the side brush mechanism shows that this is a nonlinear system. Therefore, the Sliding Mode Control(SMC) was proposed and established from the dynamics equation. The Lyapunov theorem demonstrates its stability. Besides, we also consider the proportional-integral-derivative (PID) controller to evaluate the responsiveness of the linear controller for a nonlinear system. Finally, the parameters of the controllers are optimized by a genetic algorithm to consider the response of the sliding mode control compared to the PID controller to control the road sweeper side brush with different references.","PeriodicalId":12218,"journal":{"name":"FME Transactions","volume":"19 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Control of the side brush street sweeper for various road surfaces using PID and sliding mode controllers\",\"authors\":\"H. Thanh, Thang Viet, T. Duc, T. Quoc\",\"doi\":\"10.5937/fme2303318h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper examines the side brush control technologies for a novelty semi-autonomous road sweeper design. This study proposes a side brush structure and offers a brush control solution to improve working efficiency and reduce abrasive brush. For the mechanical system using a parallelogram mechanism, the direction of movement when raising and lowering the brush is always parallel to the road surface. The modeling of the side brush mechanism shows that this is a nonlinear system. Therefore, the Sliding Mode Control(SMC) was proposed and established from the dynamics equation. The Lyapunov theorem demonstrates its stability. Besides, we also consider the proportional-integral-derivative (PID) controller to evaluate the responsiveness of the linear controller for a nonlinear system. Finally, the parameters of the controllers are optimized by a genetic algorithm to consider the response of the sliding mode control compared to the PID controller to control the road sweeper side brush with different references.\",\"PeriodicalId\":12218,\"journal\":{\"name\":\"FME Transactions\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FME Transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5937/fme2303318h\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FME Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5937/fme2303318h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一种新型半自动道路清扫车的侧刷控制技术。本研究提出了一种侧刷结构,并提出了一种刷控制方案,以提高工作效率,减少磨料刷。对于采用平行四边形机构的机械系统,刷体升降时的运动方向始终与路面平行。对侧刷机构的建模表明,这是一个非线性系统。因此,从动力学方程出发,提出并建立了滑模控制(SMC)。李亚普诺夫定理证明了它的稳定性。此外,我们还考虑了比例积分导数(PID)控制器来评估非线性系统的线性控制器的响应性。最后,采用遗传算法对控制器参数进行优化,考虑滑模控制相对于PID控制器的响应,对不同参考点的扫地车侧刷进行控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Control of the side brush street sweeper for various road surfaces using PID and sliding mode controllers
This paper examines the side brush control technologies for a novelty semi-autonomous road sweeper design. This study proposes a side brush structure and offers a brush control solution to improve working efficiency and reduce abrasive brush. For the mechanical system using a parallelogram mechanism, the direction of movement when raising and lowering the brush is always parallel to the road surface. The modeling of the side brush mechanism shows that this is a nonlinear system. Therefore, the Sliding Mode Control(SMC) was proposed and established from the dynamics equation. The Lyapunov theorem demonstrates its stability. Besides, we also consider the proportional-integral-derivative (PID) controller to evaluate the responsiveness of the linear controller for a nonlinear system. Finally, the parameters of the controllers are optimized by a genetic algorithm to consider the response of the sliding mode control compared to the PID controller to control the road sweeper side brush with different references.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
FME Transactions
FME Transactions ENGINEERING, MECHANICAL-
CiteScore
3.60
自引率
31.20%
发文量
24
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信