{"title":"H∞差分插值","authors":"F. Tugores, L. Tugores","doi":"10.1556/012.2021.58.2.1482","DOIUrl":null,"url":null,"abstract":"We pose an interpolation problem for the space of bounded analytic functions in the disk. The interpolation is performed by a function and its di˛erence of values in points whose subscripts are related by an increasing application. We impose that the data values satisfy certain conditions related to the pseudohyperbolic distance, and characterize interpolating sequences in terms of uniformly separated subsequences.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interpolation by Differences In H∞\",\"authors\":\"F. Tugores, L. Tugores\",\"doi\":\"10.1556/012.2021.58.2.1482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We pose an interpolation problem for the space of bounded analytic functions in the disk. The interpolation is performed by a function and its di˛erence of values in points whose subscripts are related by an increasing application. We impose that the data values satisfy certain conditions related to the pseudohyperbolic distance, and characterize interpolating sequences in terms of uniformly separated subsequences.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1556/012.2021.58.2.1482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1556/012.2021.58.2.1482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We pose an interpolation problem for the space of bounded analytic functions in the disk. The interpolation is performed by a function and its di˛erence of values in points whose subscripts are related by an increasing application. We impose that the data values satisfy certain conditions related to the pseudohyperbolic distance, and characterize interpolating sequences in terms of uniformly separated subsequences.