{"title":"关于n-Urysohn和n-Hausdorff空间的基数性","authors":"M. Bonanzinga, M. V. Cuzzupè, B. Pansera","doi":"10.2478/s11533-013-0339-0","DOIUrl":null,"url":null,"abstract":"Two variations of Arhangelskii’s inequality $$\\left| X \\right| \\leqslant 2^{\\chi (X) - L(X)}$$ for Hausdorff X [Arhangel’skii A.V., The power of bicompacta with first axiom of countability, Dokl. Akad. Nauk SSSR, 1969, 187, 967–970 (in Russian)] given in [Stavrova D.N., Separation pseudocharacter and the cardinality of topological spaces, Topology Proc., 2000, 25(Summer), 333–343] are extended to the classes with finite Urysohn number or finite Hausdorff number.","PeriodicalId":50988,"journal":{"name":"Central European Journal of Mathematics","volume":"16 1","pages":"330-336"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On the cardinality of n-Urysohn and n-Hausdorff spaces\",\"authors\":\"M. Bonanzinga, M. V. Cuzzupè, B. Pansera\",\"doi\":\"10.2478/s11533-013-0339-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two variations of Arhangelskii’s inequality $$\\\\left| X \\\\right| \\\\leqslant 2^{\\\\chi (X) - L(X)}$$ for Hausdorff X [Arhangel’skii A.V., The power of bicompacta with first axiom of countability, Dokl. Akad. Nauk SSSR, 1969, 187, 967–970 (in Russian)] given in [Stavrova D.N., Separation pseudocharacter and the cardinality of topological spaces, Topology Proc., 2000, 25(Summer), 333–343] are extended to the classes with finite Urysohn number or finite Hausdorff number.\",\"PeriodicalId\":50988,\"journal\":{\"name\":\"Central European Journal of Mathematics\",\"volume\":\"16 1\",\"pages\":\"330-336\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Central European Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/s11533-013-0339-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/s11533-013-0339-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the cardinality of n-Urysohn and n-Hausdorff spaces
Two variations of Arhangelskii’s inequality $$\left| X \right| \leqslant 2^{\chi (X) - L(X)}$$ for Hausdorff X [Arhangel’skii A.V., The power of bicompacta with first axiom of countability, Dokl. Akad. Nauk SSSR, 1969, 187, 967–970 (in Russian)] given in [Stavrova D.N., Separation pseudocharacter and the cardinality of topological spaces, Topology Proc., 2000, 25(Summer), 333–343] are extended to the classes with finite Urysohn number or finite Hausdorff number.