Ruqaiya Al Zadjali, Sandeep Mahaja, Mathieu M. Molenaar
{"title":"阿曼苏丹国南部油田标准化应力输入下水力裂缝建模与设计效率与可靠性的提高","authors":"Ruqaiya Al Zadjali, Sandeep Mahaja, Mathieu M. Molenaar","doi":"10.2118/205283-ms","DOIUrl":null,"url":null,"abstract":"\n Hydraulic Fracturing (HF) is widely used in PDO in low permeability tight gas formations to enhance production. The application of HF has been expanded to the Oil South as conventional practice in enhancing the recovery and production at lower cost.\n HF stimulation is used in a number of prospects in the south Oman, targeting sandstone formations such as Gharif, Al Khlata, Karim and Khaleel, most of which have undergone depletion.\n Fracture dimension are influenced by a combination of operational, well design and subsurface parameters such as injected fluid properties, injection rate, well inclination and azimuth, rock mechanical properties, formation stresses (i.e. fracture pressures) etc. Accurate fracture pressure estimate in HF design and modeling improves reliability of HF placement, which is the key for improved production performance of HF. HF treatments in the studied fields provide large volumes of valuable data.\n Developing standardized tables and charts can streamline the process to generate input parameters for HF modeling and design in an efficient and consistent manner. Results of the study can assist with developing guidelines and workflow and for HF operations.\n Field HF data from more than 100 wells in south Oman fields were analyzed to derive the magnitude of breakdown pressure (BP), Fracture Breakdown Pressure (FBP), Instantaneous Shut-In Pressure (ISIP) pressure, and Fracture Closure Pressure (FCP) and develop input correlations for HF design. Estimated initial FCP (in-situ pore pressure conditions) is in the range of 15.6 - 16 kPa/mTVD at reservoir formation pressure gradient of about 10.8 kPa/m TVD bdf. However, most of the fields have undergone variable degree of depletion prior to the HF operation. Horizontal stresses in the reservoir decrease with depletion, it is therefore important to assess the reduction of FCP with reduction in pore pressure (stress depletion). Depletion stress path coefficient (i.e. change on FCP as a fraction of change in pore pressure) was derived based on historic field data and used to predict reduction of FCP as a function of future depletion. Data from this field indicates that the magnitude of decrease in fracture pressure is about 50% of the pore pressure change.\n Based on the data analysis of available HF data, standardized charts and tables were developed to estimate FCP, FBP, and ISIP values. Ratios of FBP and ISIP to FCP were computed to establish trend with depth to provide inputs to HF planning and design. Results indicate FBP/FCP ratio ranges between 1.24-1.35 and ISIP/FCP ratio ranges between 1.1 to 1.2.\n Developed workflow and standardized tables, charts and trends provide reliable predictions inputs for HF modeling and design. Incorporating these data can be leveraged to optimize parameters for HF design and modeling for future wells.","PeriodicalId":11171,"journal":{"name":"Day 3 Thu, January 13, 2022","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Efficiency and Reliability of Hydraulic Fracture Modeling and Design with Standardized Stress Inputs for South Oil Fields in Sultanate of Oman\",\"authors\":\"Ruqaiya Al Zadjali, Sandeep Mahaja, Mathieu M. Molenaar\",\"doi\":\"10.2118/205283-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Hydraulic Fracturing (HF) is widely used in PDO in low permeability tight gas formations to enhance production. The application of HF has been expanded to the Oil South as conventional practice in enhancing the recovery and production at lower cost.\\n HF stimulation is used in a number of prospects in the south Oman, targeting sandstone formations such as Gharif, Al Khlata, Karim and Khaleel, most of which have undergone depletion.\\n Fracture dimension are influenced by a combination of operational, well design and subsurface parameters such as injected fluid properties, injection rate, well inclination and azimuth, rock mechanical properties, formation stresses (i.e. fracture pressures) etc. Accurate fracture pressure estimate in HF design and modeling improves reliability of HF placement, which is the key for improved production performance of HF. HF treatments in the studied fields provide large volumes of valuable data.\\n Developing standardized tables and charts can streamline the process to generate input parameters for HF modeling and design in an efficient and consistent manner. Results of the study can assist with developing guidelines and workflow and for HF operations.\\n Field HF data from more than 100 wells in south Oman fields were analyzed to derive the magnitude of breakdown pressure (BP), Fracture Breakdown Pressure (FBP), Instantaneous Shut-In Pressure (ISIP) pressure, and Fracture Closure Pressure (FCP) and develop input correlations for HF design. Estimated initial FCP (in-situ pore pressure conditions) is in the range of 15.6 - 16 kPa/mTVD at reservoir formation pressure gradient of about 10.8 kPa/m TVD bdf. However, most of the fields have undergone variable degree of depletion prior to the HF operation. Horizontal stresses in the reservoir decrease with depletion, it is therefore important to assess the reduction of FCP with reduction in pore pressure (stress depletion). Depletion stress path coefficient (i.e. change on FCP as a fraction of change in pore pressure) was derived based on historic field data and used to predict reduction of FCP as a function of future depletion. Data from this field indicates that the magnitude of decrease in fracture pressure is about 50% of the pore pressure change.\\n Based on the data analysis of available HF data, standardized charts and tables were developed to estimate FCP, FBP, and ISIP values. Ratios of FBP and ISIP to FCP were computed to establish trend with depth to provide inputs to HF planning and design. Results indicate FBP/FCP ratio ranges between 1.24-1.35 and ISIP/FCP ratio ranges between 1.1 to 1.2.\\n Developed workflow and standardized tables, charts and trends provide reliable predictions inputs for HF modeling and design. Incorporating these data can be leveraged to optimize parameters for HF design and modeling for future wells.\",\"PeriodicalId\":11171,\"journal\":{\"name\":\"Day 3 Thu, January 13, 2022\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Thu, January 13, 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/205283-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Thu, January 13, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/205283-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improved Efficiency and Reliability of Hydraulic Fracture Modeling and Design with Standardized Stress Inputs for South Oil Fields in Sultanate of Oman
Hydraulic Fracturing (HF) is widely used in PDO in low permeability tight gas formations to enhance production. The application of HF has been expanded to the Oil South as conventional practice in enhancing the recovery and production at lower cost.
HF stimulation is used in a number of prospects in the south Oman, targeting sandstone formations such as Gharif, Al Khlata, Karim and Khaleel, most of which have undergone depletion.
Fracture dimension are influenced by a combination of operational, well design and subsurface parameters such as injected fluid properties, injection rate, well inclination and azimuth, rock mechanical properties, formation stresses (i.e. fracture pressures) etc. Accurate fracture pressure estimate in HF design and modeling improves reliability of HF placement, which is the key for improved production performance of HF. HF treatments in the studied fields provide large volumes of valuable data.
Developing standardized tables and charts can streamline the process to generate input parameters for HF modeling and design in an efficient and consistent manner. Results of the study can assist with developing guidelines and workflow and for HF operations.
Field HF data from more than 100 wells in south Oman fields were analyzed to derive the magnitude of breakdown pressure (BP), Fracture Breakdown Pressure (FBP), Instantaneous Shut-In Pressure (ISIP) pressure, and Fracture Closure Pressure (FCP) and develop input correlations for HF design. Estimated initial FCP (in-situ pore pressure conditions) is in the range of 15.6 - 16 kPa/mTVD at reservoir formation pressure gradient of about 10.8 kPa/m TVD bdf. However, most of the fields have undergone variable degree of depletion prior to the HF operation. Horizontal stresses in the reservoir decrease with depletion, it is therefore important to assess the reduction of FCP with reduction in pore pressure (stress depletion). Depletion stress path coefficient (i.e. change on FCP as a fraction of change in pore pressure) was derived based on historic field data and used to predict reduction of FCP as a function of future depletion. Data from this field indicates that the magnitude of decrease in fracture pressure is about 50% of the pore pressure change.
Based on the data analysis of available HF data, standardized charts and tables were developed to estimate FCP, FBP, and ISIP values. Ratios of FBP and ISIP to FCP were computed to establish trend with depth to provide inputs to HF planning and design. Results indicate FBP/FCP ratio ranges between 1.24-1.35 and ISIP/FCP ratio ranges between 1.1 to 1.2.
Developed workflow and standardized tables, charts and trends provide reliable predictions inputs for HF modeling and design. Incorporating these data can be leveraged to optimize parameters for HF design and modeling for future wells.