Eunyong Cheon, Yonghwan Shin, J. Huh, Hyoungshick Kim, Ian Oakley
{"title":"智能手机的手势认证:手势密码选择策略的评估","authors":"Eunyong Cheon, Yonghwan Shin, J. Huh, Hyoungshick Kim, Ian Oakley","doi":"10.1109/SP40000.2020.00034","DOIUrl":null,"url":null,"abstract":"Touchscreen gestures are attracting research attention as an authentication method. While studies have showcased their usability, it has proven more complex to determine, let alone enhance, their security. Problems stem both from the small scale of current data sets and the fact that gestures are matched imprecisely – by a distance metric. This makes it challenging to assess entropy with traditional algorithms. To address these problems, we captured a large set of gesture passwords (N=2594) from crowd workers, and developed a security assessment framework that can calculate partial guessing entropy estimates, and generate dictionaries that crack 23.13% or more gestures in online attacks (within 20 guesses). To improve the entropy of gesture passwords, we designed novel blacklist and lexical policies to, respectively, restrict and inspire gesture creation. We close by validating both our security assessment framework and policies in a new crowd-sourced study (N=4000). Our blacklists increase entropy and resistance to dictionary based guessing attacks.","PeriodicalId":6849,"journal":{"name":"2020 IEEE Symposium on Security and Privacy (SP)","volume":"28 1","pages":"249-267"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Gesture Authentication for Smartphones: Evaluation of Gesture Password Selection Policies\",\"authors\":\"Eunyong Cheon, Yonghwan Shin, J. Huh, Hyoungshick Kim, Ian Oakley\",\"doi\":\"10.1109/SP40000.2020.00034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Touchscreen gestures are attracting research attention as an authentication method. While studies have showcased their usability, it has proven more complex to determine, let alone enhance, their security. Problems stem both from the small scale of current data sets and the fact that gestures are matched imprecisely – by a distance metric. This makes it challenging to assess entropy with traditional algorithms. To address these problems, we captured a large set of gesture passwords (N=2594) from crowd workers, and developed a security assessment framework that can calculate partial guessing entropy estimates, and generate dictionaries that crack 23.13% or more gestures in online attacks (within 20 guesses). To improve the entropy of gesture passwords, we designed novel blacklist and lexical policies to, respectively, restrict and inspire gesture creation. We close by validating both our security assessment framework and policies in a new crowd-sourced study (N=4000). Our blacklists increase entropy and resistance to dictionary based guessing attacks.\",\"PeriodicalId\":6849,\"journal\":{\"name\":\"2020 IEEE Symposium on Security and Privacy (SP)\",\"volume\":\"28 1\",\"pages\":\"249-267\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Symposium on Security and Privacy (SP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SP40000.2020.00034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium on Security and Privacy (SP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SP40000.2020.00034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Gesture Authentication for Smartphones: Evaluation of Gesture Password Selection Policies
Touchscreen gestures are attracting research attention as an authentication method. While studies have showcased their usability, it has proven more complex to determine, let alone enhance, their security. Problems stem both from the small scale of current data sets and the fact that gestures are matched imprecisely – by a distance metric. This makes it challenging to assess entropy with traditional algorithms. To address these problems, we captured a large set of gesture passwords (N=2594) from crowd workers, and developed a security assessment framework that can calculate partial guessing entropy estimates, and generate dictionaries that crack 23.13% or more gestures in online attacks (within 20 guesses). To improve the entropy of gesture passwords, we designed novel blacklist and lexical policies to, respectively, restrict and inspire gesture creation. We close by validating both our security assessment framework and policies in a new crowd-sourced study (N=4000). Our blacklists increase entropy and resistance to dictionary based guessing attacks.