{"title":"极端工况下电动助力转向系统自抗扰控制策略研究","authors":"Zhuan Zheng, JinCheng Wei","doi":"10.1177/00202940231192986","DOIUrl":null,"url":null,"abstract":"In response to the influence of motor interference, damping, friction, and other uncertain factors on the operation of electric power steering systems under extreme working conditions, this study proposes a control strategy for electric power steering systems based on an active disturbance rejection algorithm. In ADRC, the fastest tracking differentiator is used to arrange the transition process for the target signal, and the extended state observer compensates for the total disturbance in the system. Phase compensation has been performed on the monitoring torque by using the torque differentiation method. The Simulink/Carsim simulation results show that ADRC has significantly improved anti-disturbance performance compared to PID and fuzzy PID. When using ADRC, the tracking accuracy of the assisted current is enhanced by 45.8%–75.8%, and the current adjustment time is reduced by 35.6%–61.7%. After phase compensation, the monitoring torque overshoot is reduced by 83.3%. Therefore, the proposed control strategy improves EPS’s robustness and steering feel.","PeriodicalId":18375,"journal":{"name":"Measurement and Control","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on active disturbance rejection control strategy of electric power steering system under extreme working conditions\",\"authors\":\"Zhuan Zheng, JinCheng Wei\",\"doi\":\"10.1177/00202940231192986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In response to the influence of motor interference, damping, friction, and other uncertain factors on the operation of electric power steering systems under extreme working conditions, this study proposes a control strategy for electric power steering systems based on an active disturbance rejection algorithm. In ADRC, the fastest tracking differentiator is used to arrange the transition process for the target signal, and the extended state observer compensates for the total disturbance in the system. Phase compensation has been performed on the monitoring torque by using the torque differentiation method. The Simulink/Carsim simulation results show that ADRC has significantly improved anti-disturbance performance compared to PID and fuzzy PID. When using ADRC, the tracking accuracy of the assisted current is enhanced by 45.8%–75.8%, and the current adjustment time is reduced by 35.6%–61.7%. After phase compensation, the monitoring torque overshoot is reduced by 83.3%. Therefore, the proposed control strategy improves EPS’s robustness and steering feel.\",\"PeriodicalId\":18375,\"journal\":{\"name\":\"Measurement and Control\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/00202940231192986\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00202940231192986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Research on active disturbance rejection control strategy of electric power steering system under extreme working conditions
In response to the influence of motor interference, damping, friction, and other uncertain factors on the operation of electric power steering systems under extreme working conditions, this study proposes a control strategy for electric power steering systems based on an active disturbance rejection algorithm. In ADRC, the fastest tracking differentiator is used to arrange the transition process for the target signal, and the extended state observer compensates for the total disturbance in the system. Phase compensation has been performed on the monitoring torque by using the torque differentiation method. The Simulink/Carsim simulation results show that ADRC has significantly improved anti-disturbance performance compared to PID and fuzzy PID. When using ADRC, the tracking accuracy of the assisted current is enhanced by 45.8%–75.8%, and the current adjustment time is reduced by 35.6%–61.7%. After phase compensation, the monitoring torque overshoot is reduced by 83.3%. Therefore, the proposed control strategy improves EPS’s robustness and steering feel.