谱范数和条形码的边界

IF 2 1区 数学
A. Kislev, E. Shelukhin
{"title":"谱范数和条形码的边界","authors":"A. Kislev, E. Shelukhin","doi":"10.2140/gt.2021.25.3257","DOIUrl":null,"url":null,"abstract":"We investigate the relations between algebraic structures, spectral invariants, and persistence modules, in the context of monotone Lagrangian Floer homology with Hamiltonian term. Firstly, we use the newly introduced method of filtered continuation elements to prove that the Lagrangian spectral norm controls the barcode of the Hamiltonian perturbation of the Lagrangian submanifold, up to shift, in the bottleneck distance. Moreover, we show that it satisfies Chekanov type low-energy intersection phenomena, and non-degeneracy theorems. Secondly, we introduce a new averaging method for bounding the spectral norm from above, and apply it to produce precise uniform bounds on the Lagrangian spectral norm in certain closed symplectic manifolds. Finally, by using the theory of persistence modules, we prove that our bounds are in fact sharp in some cases. Along the way we produce a new calculation of the Lagrangian quantum homology of certain Lagrangian submanifolds, and answer a question of Usher.","PeriodicalId":55105,"journal":{"name":"Geometry & Topology","volume":"14 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2018-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Bounds on spectral norms and barcodes\",\"authors\":\"A. Kislev, E. Shelukhin\",\"doi\":\"10.2140/gt.2021.25.3257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the relations between algebraic structures, spectral invariants, and persistence modules, in the context of monotone Lagrangian Floer homology with Hamiltonian term. Firstly, we use the newly introduced method of filtered continuation elements to prove that the Lagrangian spectral norm controls the barcode of the Hamiltonian perturbation of the Lagrangian submanifold, up to shift, in the bottleneck distance. Moreover, we show that it satisfies Chekanov type low-energy intersection phenomena, and non-degeneracy theorems. Secondly, we introduce a new averaging method for bounding the spectral norm from above, and apply it to produce precise uniform bounds on the Lagrangian spectral norm in certain closed symplectic manifolds. Finally, by using the theory of persistence modules, we prove that our bounds are in fact sharp in some cases. Along the way we produce a new calculation of the Lagrangian quantum homology of certain Lagrangian submanifolds, and answer a question of Usher.\",\"PeriodicalId\":55105,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2018-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/gt.2021.25.3257\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2021.25.3257","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

在单调拉格朗日花与哈密顿项同调的情况下,研究了代数结构、谱不变量和持久模之间的关系。首先,利用新引入的滤波延拓元方法证明了拉格朗日谱范数在瓶颈距离上控制拉格朗日子流形的哈密顿摄动直至位移的条码。此外,我们还证明了它满足Chekanov型低能相交现象和非简并定理。其次,我们引入了一种新的谱范数边界的平均方法,并应用它得到了某些闭辛流形的拉格朗日谱范数的精确一致边界。最后,通过使用持久模块理论,我们证明了在某些情况下,我们的边界实际上是尖锐的。在此过程中,我们对某些拉格朗日子流形的拉格朗日量子同调进行了新的计算,并回答了Usher的一个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bounds on spectral norms and barcodes
We investigate the relations between algebraic structures, spectral invariants, and persistence modules, in the context of monotone Lagrangian Floer homology with Hamiltonian term. Firstly, we use the newly introduced method of filtered continuation elements to prove that the Lagrangian spectral norm controls the barcode of the Hamiltonian perturbation of the Lagrangian submanifold, up to shift, in the bottleneck distance. Moreover, we show that it satisfies Chekanov type low-energy intersection phenomena, and non-degeneracy theorems. Secondly, we introduce a new averaging method for bounding the spectral norm from above, and apply it to produce precise uniform bounds on the Lagrangian spectral norm in certain closed symplectic manifolds. Finally, by using the theory of persistence modules, we prove that our bounds are in fact sharp in some cases. Along the way we produce a new calculation of the Lagrangian quantum homology of certain Lagrangian submanifolds, and answer a question of Usher.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geometry & Topology
Geometry & Topology 数学-数学
自引率
5.00%
发文量
34
期刊介绍: Geometry and Topology is a fully refereed journal covering all of geometry and topology, broadly understood. G&T is published in electronic and print formats by Mathematical Sciences Publishers. The purpose of Geometry & Topology is the advancement of mathematics. Editors evaluate submitted papers strictly on the basis of scientific merit, without regard to authors" nationality, country of residence, institutional affiliation, sex, ethnic origin, or political views.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信