热泵过热蒸汽冷凝器的近似热计算

Q3 Energy
V. Volodin, S. V. Zditovetskaya
{"title":"热泵过热蒸汽冷凝器的近似热计算","authors":"V. Volodin, S. V. Zditovetskaya","doi":"10.21122/1029-7448-2022-65-3-250-262","DOIUrl":null,"url":null,"abstract":"A comparative analysis of the methods of approximate thermal calculation of the superheated steam condenser of the steam compression heat pump of the heat supply system is presented. The working substance of the heat pump and the condensing steam is the refrigerant R410a. When the single-zone method is applied, the condenser is calculated by one area with the inclusion of the heat of overheating in the heat of condensation and the use of the overheating coefficient. The two-zone method assumes the calculation of the condenser in two separate areas, viz. the cooling of superheated steam and its actual condensation. The approbation was carried out during a numerical study of a condenser of a low-temperature heat pump system for heating and hot water supply, with a heat exchange surface in the form of a spiral coil pipe in a pipe immersed in a heated liquid. In the first approach, the flow rate and temperature of the heated water are limited by the saturation temperature of the condensing refrigerant, regardless of the flow pattern of the working media. The method of two-zone calculation of the superheated steam condenser with a counter-current or cross-counter-current flow scheme of working media makes it possible to obtain real results of the temperature of the heated water that exceeds the temperature of the saturated refrigerant vapor, taking into account the flow rate of the heated water. In this case, the wall temperature in the cooling area is higher than the saturation temperature, and during condensation it is lower, which further confirms the adequacy of the presented technique. The use of a two-zone technique with a separate averaging of the physical properties of the working media in the areas of superheated steam and condensation cooling, as well as temperature pressures, provides a more accurate value of the heat exchange surface, which in the case under consideration is reduced to 20%. Based on the conducted studies, it is recommended to use a two-zone technique that makes it possible to obtain reliable data on the parameters of the superheated steam condenser.","PeriodicalId":52141,"journal":{"name":"Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximate Thermal Calculation of the Superheated Steam Condenser of Heat Pumps\",\"authors\":\"V. Volodin, S. V. Zditovetskaya\",\"doi\":\"10.21122/1029-7448-2022-65-3-250-262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A comparative analysis of the methods of approximate thermal calculation of the superheated steam condenser of the steam compression heat pump of the heat supply system is presented. The working substance of the heat pump and the condensing steam is the refrigerant R410a. When the single-zone method is applied, the condenser is calculated by one area with the inclusion of the heat of overheating in the heat of condensation and the use of the overheating coefficient. The two-zone method assumes the calculation of the condenser in two separate areas, viz. the cooling of superheated steam and its actual condensation. The approbation was carried out during a numerical study of a condenser of a low-temperature heat pump system for heating and hot water supply, with a heat exchange surface in the form of a spiral coil pipe in a pipe immersed in a heated liquid. In the first approach, the flow rate and temperature of the heated water are limited by the saturation temperature of the condensing refrigerant, regardless of the flow pattern of the working media. The method of two-zone calculation of the superheated steam condenser with a counter-current or cross-counter-current flow scheme of working media makes it possible to obtain real results of the temperature of the heated water that exceeds the temperature of the saturated refrigerant vapor, taking into account the flow rate of the heated water. In this case, the wall temperature in the cooling area is higher than the saturation temperature, and during condensation it is lower, which further confirms the adequacy of the presented technique. The use of a two-zone technique with a separate averaging of the physical properties of the working media in the areas of superheated steam and condensation cooling, as well as temperature pressures, provides a more accurate value of the heat exchange surface, which in the case under consideration is reduced to 20%. Based on the conducted studies, it is recommended to use a two-zone technique that makes it possible to obtain reliable data on the parameters of the superheated steam condenser.\",\"PeriodicalId\":52141,\"journal\":{\"name\":\"Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21122/1029-7448-2022-65-3-250-262\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21122/1029-7448-2022-65-3-250-262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

对供热系统蒸汽压缩热泵过热蒸汽冷凝器的近似热计算方法进行了比较分析。热泵和冷凝蒸汽的工作物质为制冷剂R410a。当采用单区法时,冷凝器按一个面积计算,在冷凝热中包含过热热,并使用过热系数。双区方法假定冷凝器的计算在两个独立的区域,即过热蒸汽的冷却和它的实际冷凝。对低温热泵系统的冷凝器进行了数值研究,该系统的换热表面为浸入加热液体的管内的螺旋盘管形式。在第一种方法中,加热水的流速和温度受到冷凝制冷剂饱和温度的限制,而不管工质的流动模式如何。采用工质逆流或交叉逆流流动方案的过热蒸汽冷凝器两区计算方法,在考虑到被加热水流量的情况下,可以得到被加热水温度超过饱和制冷剂蒸气温度的真实结果。在这种情况下,冷却区壁面温度高于饱和温度,冷凝时壁面温度较低,进一步证实了所提技术的充分性。使用两区技术,在过热蒸汽和冷凝冷却以及温度压力区域分别平均工作介质的物理性质,可以提供更准确的热交换表面值,在考虑的情况下减少到20%。根据所进行的研究,建议使用双区技术,使获得过热蒸汽冷凝器参数的可靠数据成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximate Thermal Calculation of the Superheated Steam Condenser of Heat Pumps
A comparative analysis of the methods of approximate thermal calculation of the superheated steam condenser of the steam compression heat pump of the heat supply system is presented. The working substance of the heat pump and the condensing steam is the refrigerant R410a. When the single-zone method is applied, the condenser is calculated by one area with the inclusion of the heat of overheating in the heat of condensation and the use of the overheating coefficient. The two-zone method assumes the calculation of the condenser in two separate areas, viz. the cooling of superheated steam and its actual condensation. The approbation was carried out during a numerical study of a condenser of a low-temperature heat pump system for heating and hot water supply, with a heat exchange surface in the form of a spiral coil pipe in a pipe immersed in a heated liquid. In the first approach, the flow rate and temperature of the heated water are limited by the saturation temperature of the condensing refrigerant, regardless of the flow pattern of the working media. The method of two-zone calculation of the superheated steam condenser with a counter-current or cross-counter-current flow scheme of working media makes it possible to obtain real results of the temperature of the heated water that exceeds the temperature of the saturated refrigerant vapor, taking into account the flow rate of the heated water. In this case, the wall temperature in the cooling area is higher than the saturation temperature, and during condensation it is lower, which further confirms the adequacy of the presented technique. The use of a two-zone technique with a separate averaging of the physical properties of the working media in the areas of superheated steam and condensation cooling, as well as temperature pressures, provides a more accurate value of the heat exchange surface, which in the case under consideration is reduced to 20%. Based on the conducted studies, it is recommended to use a two-zone technique that makes it possible to obtain reliable data on the parameters of the superheated steam condenser.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
32
审稿时长
8 weeks
期刊介绍: The most important objectives of the journal are the generalization of scientific and practical achievements in the field of power engineering, increase scientific and practical skills as researchers and industry representatives. Scientific concept publications include the publication of a modern national and international research and achievements in areas such as general energetic, electricity, thermal energy, construction, environmental issues energy, energy economy, etc. The journal publishes the results of basic research and the advanced achievements of practices aimed at improving the efficiency of the functioning of the energy sector, reduction of losses in electricity and heat networks, improving the reliability of electrical protection systems, the stability of the energetic complex, literature reviews on a wide range of energy issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信