多路近场光捕获

D. Conteduca, G. Brunetti, G. Pitruzzello, K. Dholakia, T. Krauss, C. Ciminelli
{"title":"多路近场光捕获","authors":"D. Conteduca, G. Brunetti, G. Pitruzzello, K. Dholakia, T. Krauss, C. Ciminelli","doi":"10.1117/12.2636025","DOIUrl":null,"url":null,"abstract":"Nanophotonic structures optimise the strength of optical forces, enabling trapping at the nanoscale. To improve the impact of nanotweezers in biological studies, it is necessary to move from individual traps to large multiplexed arrays. Here, we discuss the state-of-the-art of nanotweezers for multiplexed trapping, describing advantages and drawbacks of the configurations that have demonstrated the strongest impact in this field. Finally, we focus on our latest results with a dielectric metasurface that supports strong resonances with thousands of trapping sites. We demonstrate near-field enhancement and simulate trapping performance for 100 nm particles, verifying the possibility to trap > 1000 particles with a low total power of P < 30 mW. The multiplexed trapping with dielectric metasurfaces can open up new biological studies on viruses and vesicles.","PeriodicalId":13820,"journal":{"name":"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)","volume":"98 1","pages":"1219803 - 1219803-4"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multiplexed near-field optical trapping\",\"authors\":\"D. Conteduca, G. Brunetti, G. Pitruzzello, K. Dholakia, T. Krauss, C. Ciminelli\",\"doi\":\"10.1117/12.2636025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanophotonic structures optimise the strength of optical forces, enabling trapping at the nanoscale. To improve the impact of nanotweezers in biological studies, it is necessary to move from individual traps to large multiplexed arrays. Here, we discuss the state-of-the-art of nanotweezers for multiplexed trapping, describing advantages and drawbacks of the configurations that have demonstrated the strongest impact in this field. Finally, we focus on our latest results with a dielectric metasurface that supports strong resonances with thousands of trapping sites. We demonstrate near-field enhancement and simulate trapping performance for 100 nm particles, verifying the possibility to trap > 1000 particles with a low total power of P < 30 mW. The multiplexed trapping with dielectric metasurfaces can open up new biological studies on viruses and vesicles.\",\"PeriodicalId\":13820,\"journal\":{\"name\":\"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)\",\"volume\":\"98 1\",\"pages\":\"1219803 - 1219803-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2636025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2636025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

纳米光子结构优化了光力的强度,实现了纳米级的捕获。为了提高纳米镊子在生物学研究中的影响,有必要从单个陷阱转向大型多路复用阵列。在这里,我们讨论了用于多路捕获的纳米镊子的最新技术,描述了在该领域表现出最强影响的配置的优点和缺点。最后,我们重点介绍了我们的最新结果,该结果支持与数千个捕获点的强共振。我们演示了近场增强并模拟了100 nm粒子的捕获性能,验证了在P < 30 mW的低总功率下捕获> 1000个粒子的可能性。介质超表面的多路诱捕为病毒和囊泡的生物学研究开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiplexed near-field optical trapping
Nanophotonic structures optimise the strength of optical forces, enabling trapping at the nanoscale. To improve the impact of nanotweezers in biological studies, it is necessary to move from individual traps to large multiplexed arrays. Here, we discuss the state-of-the-art of nanotweezers for multiplexed trapping, describing advantages and drawbacks of the configurations that have demonstrated the strongest impact in this field. Finally, we focus on our latest results with a dielectric metasurface that supports strong resonances with thousands of trapping sites. We demonstrate near-field enhancement and simulate trapping performance for 100 nm particles, verifying the possibility to trap > 1000 particles with a low total power of P < 30 mW. The multiplexed trapping with dielectric metasurfaces can open up new biological studies on viruses and vesicles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信