可激介质连续模型与离散模型之间的关系

A. Feldman, Y. Chernyak, R. Cohen
{"title":"可激介质连续模型与离散模型之间的关系","authors":"A. Feldman, Y. Chernyak, R. Cohen","doi":"10.1109/IEMBS.1995.574993","DOIUrl":null,"url":null,"abstract":"The authors derived a general eikonal equation describing the evolution of a wavefront propagating in an excitable medium this equation implements the relation between the propagation speed and the wavefront curvature known from a more detailed theory. The authors used an approximate solution to obtain equations linking the excitation time scale /spl tau/ and diffusion constant D of a continuous reaction rate model with the excitation parameters of a discrete cellular automaton model on a randomized lattice.","PeriodicalId":20509,"journal":{"name":"Proceedings of 17th International Conference of the Engineering in Medicine and Biology Society","volume":"18 1","pages":"47-48 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"1995-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relations between continuous and discrete models of excitable media\",\"authors\":\"A. Feldman, Y. Chernyak, R. Cohen\",\"doi\":\"10.1109/IEMBS.1995.574993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors derived a general eikonal equation describing the evolution of a wavefront propagating in an excitable medium this equation implements the relation between the propagation speed and the wavefront curvature known from a more detailed theory. The authors used an approximate solution to obtain equations linking the excitation time scale /spl tau/ and diffusion constant D of a continuous reaction rate model with the excitation parameters of a discrete cellular automaton model on a randomized lattice.\",\"PeriodicalId\":20509,\"journal\":{\"name\":\"Proceedings of 17th International Conference of the Engineering in Medicine and Biology Society\",\"volume\":\"18 1\",\"pages\":\"47-48 vol.1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 17th International Conference of the Engineering in Medicine and Biology Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMBS.1995.574993\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 17th International Conference of the Engineering in Medicine and Biology Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMBS.1995.574993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

作者推导了一个描述波前在可激介质中传播演化的一般方程,该方程实现了从更详细的理论中已知的波前曲率与传播速度之间的关系。用近似解得到了连续反应速率模型的激励时标/spl / tau/和扩散常数D与随机格上离散元胞自动机模型的激励参数之间的联系方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relations between continuous and discrete models of excitable media
The authors derived a general eikonal equation describing the evolution of a wavefront propagating in an excitable medium this equation implements the relation between the propagation speed and the wavefront curvature known from a more detailed theory. The authors used an approximate solution to obtain equations linking the excitation time scale /spl tau/ and diffusion constant D of a continuous reaction rate model with the excitation parameters of a discrete cellular automaton model on a randomized lattice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信