{"title":"采用28纳米CMOS FD-SOI技术的f波段反射放大器,用于有源反射射线和空间功率组合应用","authors":"Naftali Landsberg, E. Socher","doi":"10.1109/MWSYM.2016.7540288","DOIUrl":null,"url":null,"abstract":"A new topology of a reflection amplifier is proposed and demonstrated using a CMOS FD-SOI 28 nm process for high gain reflectarray antenna applications. The design is based on two sets of cross coupled pairs which are coupled inductively. An internal oscillations-block was implemented in order to improve the stability of the amplifier. Variable stable gain of 5-25 dB at the bandwidth of 106-127 GHz was achieved, with output power of up to 0 dBm (measurement limited). The total power consumption was 6-20 mW, depending on the exact bias configuration. The reflection amplifier results with a 3-dB bandwidth of up to 18%. The design consumes a core area of only 90×80 μm2 and allows the implementation of high efficiency active reflectarray antennas.","PeriodicalId":6554,"journal":{"name":"2016 IEEE MTT-S International Microwave Symposium (IMS)","volume":"11 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An F-Band Reflection Amplifier using 28 nm CMOS FD-SOI Technology for Active Reflectarrays and Spatial Power Combining Applications\",\"authors\":\"Naftali Landsberg, E. Socher\",\"doi\":\"10.1109/MWSYM.2016.7540288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new topology of a reflection amplifier is proposed and demonstrated using a CMOS FD-SOI 28 nm process for high gain reflectarray antenna applications. The design is based on two sets of cross coupled pairs which are coupled inductively. An internal oscillations-block was implemented in order to improve the stability of the amplifier. Variable stable gain of 5-25 dB at the bandwidth of 106-127 GHz was achieved, with output power of up to 0 dBm (measurement limited). The total power consumption was 6-20 mW, depending on the exact bias configuration. The reflection amplifier results with a 3-dB bandwidth of up to 18%. The design consumes a core area of only 90×80 μm2 and allows the implementation of high efficiency active reflectarray antennas.\",\"PeriodicalId\":6554,\"journal\":{\"name\":\"2016 IEEE MTT-S International Microwave Symposium (IMS)\",\"volume\":\"11 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE MTT-S International Microwave Symposium (IMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSYM.2016.7540288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE MTT-S International Microwave Symposium (IMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2016.7540288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An F-Band Reflection Amplifier using 28 nm CMOS FD-SOI Technology for Active Reflectarrays and Spatial Power Combining Applications
A new topology of a reflection amplifier is proposed and demonstrated using a CMOS FD-SOI 28 nm process for high gain reflectarray antenna applications. The design is based on two sets of cross coupled pairs which are coupled inductively. An internal oscillations-block was implemented in order to improve the stability of the amplifier. Variable stable gain of 5-25 dB at the bandwidth of 106-127 GHz was achieved, with output power of up to 0 dBm (measurement limited). The total power consumption was 6-20 mW, depending on the exact bias configuration. The reflection amplifier results with a 3-dB bandwidth of up to 18%. The design consumes a core area of only 90×80 μm2 and allows the implementation of high efficiency active reflectarray antennas.