一种可穿戴单脑电通道分析方法用于精神压力状态检测

Ala Hag, D. Handayani, T. Pillai, T. Mantoro, M. H. Kit, Fares Al-Shargie
{"title":"一种可穿戴单脑电通道分析方法用于精神压力状态检测","authors":"Ala Hag, D. Handayani, T. Pillai, T. Mantoro, M. H. Kit, Fares Al-Shargie","doi":"10.1109/ICCED53389.2021.9664880","DOIUrl":null,"url":null,"abstract":"Mental stress is a world’s apprising issue due to its impact on health and the economy. Chronic stress negatively affects human cognitive abilities and decision-making. To avoid its serious consequences, it is paramount important to detect it at an early stage. In this study, we assessed the levels of stress on 28 healthy subjects by utilizing an Electroencephalogram (EEG) of a single channel and machine learning approach. The EEG signals were analyzed by extracting 20 features from the time and frequency domains. The optimum features were, then, selected using decision trees of information gain. Consequently, we classified the levels of stress using support vector machines (SVM) classifier with a GRID Search optimizer. The proposed feature selection method results in a 66% reduction of feature vector space and achieved an accuracy of 86% using the optimized SVM classifier. Our result demonstrates the effectiveness of the proposed method for the development of real-life stress applications.","PeriodicalId":6800,"journal":{"name":"2021 IEEE 7th International Conference on Computing, Engineering and Design (ICCED)","volume":"19 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A wearable single EEG channel analysis for mental stress state detection\",\"authors\":\"Ala Hag, D. Handayani, T. Pillai, T. Mantoro, M. H. Kit, Fares Al-Shargie\",\"doi\":\"10.1109/ICCED53389.2021.9664880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mental stress is a world’s apprising issue due to its impact on health and the economy. Chronic stress negatively affects human cognitive abilities and decision-making. To avoid its serious consequences, it is paramount important to detect it at an early stage. In this study, we assessed the levels of stress on 28 healthy subjects by utilizing an Electroencephalogram (EEG) of a single channel and machine learning approach. The EEG signals were analyzed by extracting 20 features from the time and frequency domains. The optimum features were, then, selected using decision trees of information gain. Consequently, we classified the levels of stress using support vector machines (SVM) classifier with a GRID Search optimizer. The proposed feature selection method results in a 66% reduction of feature vector space and achieved an accuracy of 86% using the optimized SVM classifier. Our result demonstrates the effectiveness of the proposed method for the development of real-life stress applications.\",\"PeriodicalId\":6800,\"journal\":{\"name\":\"2021 IEEE 7th International Conference on Computing, Engineering and Design (ICCED)\",\"volume\":\"19 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 7th International Conference on Computing, Engineering and Design (ICCED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCED53389.2021.9664880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 7th International Conference on Computing, Engineering and Design (ICCED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCED53389.2021.9664880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

由于对健康和经济的影响,精神压力是一个令人震惊的世界性问题。慢性压力会对人的认知能力和决策能力产生负面影响。为了避免其严重后果,在早期发现它是至关重要的。在这项研究中,我们利用单通道脑电图(EEG)和机器学习方法评估了28名健康受试者的压力水平。从时域和频域提取20个特征对脑电信号进行分析。然后,利用信息增益决策树选择最优特征。因此,我们使用支持向量机(SVM)分类器和GRID搜索优化器对应力水平进行分类。所提出的特征选择方法使用优化后的SVM分类器,特征向量空间减少66%,准确率达到86%。我们的结果证明了所提出的方法在实际压力应用开发中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A wearable single EEG channel analysis for mental stress state detection
Mental stress is a world’s apprising issue due to its impact on health and the economy. Chronic stress negatively affects human cognitive abilities and decision-making. To avoid its serious consequences, it is paramount important to detect it at an early stage. In this study, we assessed the levels of stress on 28 healthy subjects by utilizing an Electroencephalogram (EEG) of a single channel and machine learning approach. The EEG signals were analyzed by extracting 20 features from the time and frequency domains. The optimum features were, then, selected using decision trees of information gain. Consequently, we classified the levels of stress using support vector machines (SVM) classifier with a GRID Search optimizer. The proposed feature selection method results in a 66% reduction of feature vector space and achieved an accuracy of 86% using the optimized SVM classifier. Our result demonstrates the effectiveness of the proposed method for the development of real-life stress applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信