{"title":"任意子和Aharonov-Bohm算子的磁扰动Schrödinger","authors":"M. Correggi, Davide Fermi","doi":"10.1063/5.0018933","DOIUrl":null,"url":null,"abstract":"We study the Hamiltonian describing two anyons moving in a plane in presence of an external magnetic field and identify a one-parameter family of self-adjoint realizations of the corresponding Schrodinger operator. We also discuss the associated model describing a quantum particle immersed in a magnetic field with a local Aharonov-Bohm singularity. For a special class of magnetic potentials, we provide a complete classification of all possible self-adjoint extensions.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Magnetic perturbations of anyonic and Aharonov–Bohm Schrödinger operators\",\"authors\":\"M. Correggi, Davide Fermi\",\"doi\":\"10.1063/5.0018933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the Hamiltonian describing two anyons moving in a plane in presence of an external magnetic field and identify a one-parameter family of self-adjoint realizations of the corresponding Schrodinger operator. We also discuss the associated model describing a quantum particle immersed in a magnetic field with a local Aharonov-Bohm singularity. For a special class of magnetic potentials, we provide a complete classification of all possible self-adjoint extensions.\",\"PeriodicalId\":8469,\"journal\":{\"name\":\"arXiv: Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0018933\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0018933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Magnetic perturbations of anyonic and Aharonov–Bohm Schrödinger operators
We study the Hamiltonian describing two anyons moving in a plane in presence of an external magnetic field and identify a one-parameter family of self-adjoint realizations of the corresponding Schrodinger operator. We also discuss the associated model describing a quantum particle immersed in a magnetic field with a local Aharonov-Bohm singularity. For a special class of magnetic potentials, we provide a complete classification of all possible self-adjoint extensions.