一类具有时滞的OSN模型的稳定性和分岔分析

Liancheng Wang, Min Wang
{"title":"一类具有时滞的OSN模型的稳定性和分岔分析","authors":"Liancheng Wang, Min Wang","doi":"10.31197/atnaa.1152602","DOIUrl":null,"url":null,"abstract":"In this research, we propose and study an online social network mathematical model with delay based on two innovative assumptions: (1) newcomers are entering community as either potential online network users or that who are never interested in online network at constant rates, respectively; and (2) it takes a certain time for the active online network users to start abandoning the network. The basic reproduction $R_0,$ the user-free equilibrium(UFE) $P_0,$ and the user-prevailing equilibrium(UPE) $P^*$ are identified. The analysis of local and global stability for those equilibria is carried out. For the UPE $P^*,$ using the delay $\\tau$ as the Hopf bifurcation parameter, the occurrence of Hopf bifurcation is investigated. The conditions are established that guarantee the Hopf bifurcation occurs as $\\tau$ crosses the critical values. Numerical simulations are provided to illustrate the theoretical results.","PeriodicalId":7440,"journal":{"name":"Advances in the Theory of Nonlinear Analysis and its Application","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability and Bifurcation Analysis For An OSN Model with Delay\",\"authors\":\"Liancheng Wang, Min Wang\",\"doi\":\"10.31197/atnaa.1152602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, we propose and study an online social network mathematical model with delay based on two innovative assumptions: (1) newcomers are entering community as either potential online network users or that who are never interested in online network at constant rates, respectively; and (2) it takes a certain time for the active online network users to start abandoning the network. The basic reproduction $R_0,$ the user-free equilibrium(UFE) $P_0,$ and the user-prevailing equilibrium(UPE) $P^*$ are identified. The analysis of local and global stability for those equilibria is carried out. For the UPE $P^*,$ using the delay $\\\\tau$ as the Hopf bifurcation parameter, the occurrence of Hopf bifurcation is investigated. The conditions are established that guarantee the Hopf bifurcation occurs as $\\\\tau$ crosses the critical values. Numerical simulations are provided to illustrate the theoretical results.\",\"PeriodicalId\":7440,\"journal\":{\"name\":\"Advances in the Theory of Nonlinear Analysis and its Application\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in the Theory of Nonlinear Analysis and its Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31197/atnaa.1152602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in the Theory of Nonlinear Analysis and its Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31197/atnaa.1152602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出并研究了一个具有时滞的在线社交网络数学模型,该模型基于两个创新假设:(1)新来者分别以恒定速率作为潜在的在线网络用户或从未对在线网络感兴趣的人进入社区;(2)活跃的在线网络用户开始放弃网络需要一定的时间。确定了基本复制$R_0,$无用户均衡(UFE) $P_0,$和用户普遍均衡(UPE) $P^*$。对这些平衡点进行了局部稳定性和全局稳定性分析。对于UPE $P^*,$使用延迟$\tau$作为Hopf分岔参数,研究了Hopf分岔的发生。建立了当$\tau$越过临界值时Hopf分岔发生的条件。数值模拟验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability and Bifurcation Analysis For An OSN Model with Delay
In this research, we propose and study an online social network mathematical model with delay based on two innovative assumptions: (1) newcomers are entering community as either potential online network users or that who are never interested in online network at constant rates, respectively; and (2) it takes a certain time for the active online network users to start abandoning the network. The basic reproduction $R_0,$ the user-free equilibrium(UFE) $P_0,$ and the user-prevailing equilibrium(UPE) $P^*$ are identified. The analysis of local and global stability for those equilibria is carried out. For the UPE $P^*,$ using the delay $\tau$ as the Hopf bifurcation parameter, the occurrence of Hopf bifurcation is investigated. The conditions are established that guarantee the Hopf bifurcation occurs as $\tau$ crosses the critical values. Numerical simulations are provided to illustrate the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信