学习用于视觉跟踪的自适应空间正则化和畸变抑制相关滤波器

Q3 Engineering
Wang Ye, Liu Qiang, Qin Linbo, Qizhi Teng, X. He
{"title":"学习用于视觉跟踪的自适应空间正则化和畸变抑制相关滤波器","authors":"Wang Ye, Liu Qiang, Qin Linbo, Qizhi Teng, X. He","doi":"10.12086/OEE.2021.200068","DOIUrl":null,"url":null,"abstract":"This paper proposes a correlation filter tracking algorithm based on adaptive spatial regularization and aberrance repression aiming at the problem that the spatial regularization weight of the background-aware correlation filter is fixed and does not adapt to the change of the target, and the problem that enlarging search area may introduce background noise, decreasing the discrimination ability of filters. First, FHOG features, CN features, and gray features are extracted to enhance the algorithm's ability to express the target. Second, aberrance repression terms are added to the target function to constrain the response map of the current frame, and to enhance the filter's discrimination ability to alleviate the filter model degradation. Finally, adaptive spatial regularization terms are added to the objective function to make the spatial regularization weights being updated as the objective changes, so that the filter can make full use of the target's diversity information. This paper involves experiments on the public data sets OTB-2013, OTB-2015 and VOT2016 to evaluate the proposed algorithm. The experimental results show that the speed of the algorithm used in this paper is 20 frames/s, evaluation indicators such as distance accuracy and success rate are superior to comparison algorithms, and it has good robustness in a variety of complex scenarios such as occlusion, background interference, and rotation changes.","PeriodicalId":39552,"journal":{"name":"光电工程","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning adaptive spatial regularization and aberrance repression correlation filters for visual tracking\",\"authors\":\"Wang Ye, Liu Qiang, Qin Linbo, Qizhi Teng, X. He\",\"doi\":\"10.12086/OEE.2021.200068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a correlation filter tracking algorithm based on adaptive spatial regularization and aberrance repression aiming at the problem that the spatial regularization weight of the background-aware correlation filter is fixed and does not adapt to the change of the target, and the problem that enlarging search area may introduce background noise, decreasing the discrimination ability of filters. First, FHOG features, CN features, and gray features are extracted to enhance the algorithm's ability to express the target. Second, aberrance repression terms are added to the target function to constrain the response map of the current frame, and to enhance the filter's discrimination ability to alleviate the filter model degradation. Finally, adaptive spatial regularization terms are added to the objective function to make the spatial regularization weights being updated as the objective changes, so that the filter can make full use of the target's diversity information. This paper involves experiments on the public data sets OTB-2013, OTB-2015 and VOT2016 to evaluate the proposed algorithm. The experimental results show that the speed of the algorithm used in this paper is 20 frames/s, evaluation indicators such as distance accuracy and success rate are superior to comparison algorithms, and it has good robustness in a variety of complex scenarios such as occlusion, background interference, and rotation changes.\",\"PeriodicalId\":39552,\"journal\":{\"name\":\"光电工程\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"光电工程\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.12086/OEE.2021.200068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"光电工程","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12086/OEE.2021.200068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

针对背景感知相关滤波器空间正则化权值固定且不适应目标变化的问题,以及扩大搜索区域可能引入背景噪声,降低滤波器识别能力的问题,提出了一种基于自适应空间正则化和畸变抑制的相关滤波器跟踪算法。首先,提取FHOG特征、CN特征和灰度特征,增强算法对目标的表达能力;其次,在目标函数中加入异常抑制项,约束当前帧的响应映射,增强滤波器的识别能力,减轻滤波器模型的退化;最后,在目标函数中加入自适应空间正则化项,使空间正则化权值随着目标的变化而更新,使滤波器能够充分利用目标的分集信息。本文在OTB-2013、OTB-2015和VOT2016三个公共数据集上进行了实验,对所提出的算法进行了评估。实验结果表明,本文采用的算法速度为20帧/秒,距离精度、成功率等评价指标优于比较算法,并且在遮挡、背景干扰、旋转变化等多种复杂场景下具有良好的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning adaptive spatial regularization and aberrance repression correlation filters for visual tracking
This paper proposes a correlation filter tracking algorithm based on adaptive spatial regularization and aberrance repression aiming at the problem that the spatial regularization weight of the background-aware correlation filter is fixed and does not adapt to the change of the target, and the problem that enlarging search area may introduce background noise, decreasing the discrimination ability of filters. First, FHOG features, CN features, and gray features are extracted to enhance the algorithm's ability to express the target. Second, aberrance repression terms are added to the target function to constrain the response map of the current frame, and to enhance the filter's discrimination ability to alleviate the filter model degradation. Finally, adaptive spatial regularization terms are added to the objective function to make the spatial regularization weights being updated as the objective changes, so that the filter can make full use of the target's diversity information. This paper involves experiments on the public data sets OTB-2013, OTB-2015 and VOT2016 to evaluate the proposed algorithm. The experimental results show that the speed of the algorithm used in this paper is 20 frames/s, evaluation indicators such as distance accuracy and success rate are superior to comparison algorithms, and it has good robustness in a variety of complex scenarios such as occlusion, background interference, and rotation changes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
光电工程
光电工程 Engineering-Electrical and Electronic Engineering
CiteScore
2.00
自引率
0.00%
发文量
6622
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信