酸水解对纤维素纳米晶尺寸分布的影响及酸/微纤维素晶体比的变化

Yucheng Yang, F. Fabian, J. McKenzie, Kristyna Hyblova, Q. Ma
{"title":"酸水解对纤维素纳米晶尺寸分布的影响及酸/微纤维素晶体比的变化","authors":"Yucheng Yang, F. Fabian, J. McKenzie, Kristyna Hyblova, Q. Ma","doi":"10.1115/IMECE2020-23653","DOIUrl":null,"url":null,"abstract":"\n Literature has shown that cellulose nanocrystals (CNCs) which are produced through hydrochloric (HCl) acid hydrolysis catalyzed by inorganic chlorides can enhance the mechanical properties of organic polymers further than CNCs by pure HCl acid hydrolysis. The results have shown that the level of reinforcement may be negatively correlated to the dissociation constant of the inorganic chlorides. However, titanium tetrachloride’s dissociation constant is 1.3, lower than that of ferric chloride, 2.2, which is the lowest dissociation constant among the four inorganic chlorides that have been studied. Therefore, for this study, titanium tetrachloride was investigated along with ferric chloride. The only two variables in this study are reaction time and acid-to-microcellulose crystals (MCCs) ratio. The results of laser diffraction spectroscopy (LDS) show that the resultant solutions exhibit binomial size distributions which contain both MCCs and CNCs. At acid-to-MCCs ratio of 40 for ferric chloride, any increase in reaction time above 1.5 hours did not result in size reduction. The Fourier transform infrared (FTIR) spectroscopy results of CNCs showed that the catalyzed hydrolysis did not change the molecular structure of MCCs. The color of CNCs varies with increasing reaction time, but, based on the FTIR and LDS results, the color is not an indication of CNCs’ size nor their chemical composition.","PeriodicalId":23837,"journal":{"name":"Volume 3: Advanced Materials: Design, Processing, Characterization, and Applications","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Size Distribution of Cellulose Nanocrystals in the Variation of Acid-to-Microcellulose Crystals Ratio and Reaction Time Through Catalyzed Acid Hydrolysis\",\"authors\":\"Yucheng Yang, F. Fabian, J. McKenzie, Kristyna Hyblova, Q. Ma\",\"doi\":\"10.1115/IMECE2020-23653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Literature has shown that cellulose nanocrystals (CNCs) which are produced through hydrochloric (HCl) acid hydrolysis catalyzed by inorganic chlorides can enhance the mechanical properties of organic polymers further than CNCs by pure HCl acid hydrolysis. The results have shown that the level of reinforcement may be negatively correlated to the dissociation constant of the inorganic chlorides. However, titanium tetrachloride’s dissociation constant is 1.3, lower than that of ferric chloride, 2.2, which is the lowest dissociation constant among the four inorganic chlorides that have been studied. Therefore, for this study, titanium tetrachloride was investigated along with ferric chloride. The only two variables in this study are reaction time and acid-to-microcellulose crystals (MCCs) ratio. The results of laser diffraction spectroscopy (LDS) show that the resultant solutions exhibit binomial size distributions which contain both MCCs and CNCs. At acid-to-MCCs ratio of 40 for ferric chloride, any increase in reaction time above 1.5 hours did not result in size reduction. The Fourier transform infrared (FTIR) spectroscopy results of CNCs showed that the catalyzed hydrolysis did not change the molecular structure of MCCs. The color of CNCs varies with increasing reaction time, but, based on the FTIR and LDS results, the color is not an indication of CNCs’ size nor their chemical composition.\",\"PeriodicalId\":23837,\"journal\":{\"name\":\"Volume 3: Advanced Materials: Design, Processing, Characterization, and Applications\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 3: Advanced Materials: Design, Processing, Characterization, and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/IMECE2020-23653\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Advanced Materials: Design, Processing, Characterization, and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2020-23653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

文献表明,无机氯化物催化盐酸水解制备的纤维素纳米晶体(CNCs)比纯盐酸水解制备的纳米晶体更能提高有机聚合物的力学性能。结果表明,强化水平可能与无机氯化物的解离常数负相关。而四氯化钛的解离常数为1.3,低于氯化铁的2.2,是所研究的四种无机氯化物中解离常数最低的。因此,在本研究中,四氯化钛与氯化铁一起进行了研究。本研究中仅有的两个变量是反应时间和酸与微纤维素晶体(mcs)的比例。激光衍射光谱(LDS)结果表明,所得溶液具有二项尺寸分布,同时含有mcc和cnc。当氯化铁的酸与mcs比为40时,任何增加反应时间超过1.5小时都不会导致尺寸减小。CNCs的傅里叶红外光谱(FTIR)结果表明,催化水解没有改变MCCs的分子结构。cnc的颜色随着反应时间的增加而变化,但是,根据FTIR和LDS结果,颜色不是cnc尺寸或化学成分的指示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Size Distribution of Cellulose Nanocrystals in the Variation of Acid-to-Microcellulose Crystals Ratio and Reaction Time Through Catalyzed Acid Hydrolysis
Literature has shown that cellulose nanocrystals (CNCs) which are produced through hydrochloric (HCl) acid hydrolysis catalyzed by inorganic chlorides can enhance the mechanical properties of organic polymers further than CNCs by pure HCl acid hydrolysis. The results have shown that the level of reinforcement may be negatively correlated to the dissociation constant of the inorganic chlorides. However, titanium tetrachloride’s dissociation constant is 1.3, lower than that of ferric chloride, 2.2, which is the lowest dissociation constant among the four inorganic chlorides that have been studied. Therefore, for this study, titanium tetrachloride was investigated along with ferric chloride. The only two variables in this study are reaction time and acid-to-microcellulose crystals (MCCs) ratio. The results of laser diffraction spectroscopy (LDS) show that the resultant solutions exhibit binomial size distributions which contain both MCCs and CNCs. At acid-to-MCCs ratio of 40 for ferric chloride, any increase in reaction time above 1.5 hours did not result in size reduction. The Fourier transform infrared (FTIR) spectroscopy results of CNCs showed that the catalyzed hydrolysis did not change the molecular structure of MCCs. The color of CNCs varies with increasing reaction time, but, based on the FTIR and LDS results, the color is not an indication of CNCs’ size nor their chemical composition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信