具有不确定时变机电延迟的机动功能电刺激周期的深度神经网络实时控制

Hannah M. Sweatland, Brendon C. Allen, Max L. Greene, W. Dixon
{"title":"具有不确定时变机电延迟的机动功能电刺激周期的深度神经网络实时控制","authors":"Hannah M. Sweatland, Brendon C. Allen, Max L. Greene, W. Dixon","doi":"10.1115/imece2021-73687","DOIUrl":null,"url":null,"abstract":"\n Closed-loop functional electrical stimulation (FES) control methods are developed to facilitate motor-assisted cycling as a rehabilitative strategy for individuals with neurological disorders. One challenge for this type of control design is accounting for an input delay called the electromechanical delay (EMD) that exists between stimulation and the resultant muscle force. The EMD can cause an otherwise stable system to become unstable. A real-time deep neural network (DNN)-based motor control architecture is used to estimate the nonlinear and uncertain dynamics of each leg of the cycle-rider system. The DNN estimate of the system’s dynamics updates in real-time and is used as a feedforward term in the motor controller allowing the cycle crank to meet position and cadence tracking objectives. The nonsmooth Lyapunov-based stability analysis proves semiglobal asymptotic tracking.","PeriodicalId":23585,"journal":{"name":"Volume 7A: Dynamics, Vibration, and Control","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Deep Neural Network Real-Time Control of a Motorized Functional Electrical Stimulation Cycle With an Uncertain Time-Varying Electromechanical Delay\",\"authors\":\"Hannah M. Sweatland, Brendon C. Allen, Max L. Greene, W. Dixon\",\"doi\":\"10.1115/imece2021-73687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Closed-loop functional electrical stimulation (FES) control methods are developed to facilitate motor-assisted cycling as a rehabilitative strategy for individuals with neurological disorders. One challenge for this type of control design is accounting for an input delay called the electromechanical delay (EMD) that exists between stimulation and the resultant muscle force. The EMD can cause an otherwise stable system to become unstable. A real-time deep neural network (DNN)-based motor control architecture is used to estimate the nonlinear and uncertain dynamics of each leg of the cycle-rider system. The DNN estimate of the system’s dynamics updates in real-time and is used as a feedforward term in the motor controller allowing the cycle crank to meet position and cadence tracking objectives. The nonsmooth Lyapunov-based stability analysis proves semiglobal asymptotic tracking.\",\"PeriodicalId\":23585,\"journal\":{\"name\":\"Volume 7A: Dynamics, Vibration, and Control\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 7A: Dynamics, Vibration, and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2021-73687\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7A: Dynamics, Vibration, and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2021-73687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

开发闭环功能电刺激(FES)控制方法,以促进运动辅助自行车作为神经系统疾病患者的康复策略。这种类型的控制设计的一个挑战是考虑在刺激和产生的肌肉力量之间存在的称为机电延迟(EMD)的输入延迟。EMD会使原本稳定的系统变得不稳定。采用基于实时深度神经网络(DNN)的电机控制体系来估计骑自行车者系统每条腿的非线性和不确定动力学。系统动态的DNN估计实时更新,并在电机控制器中用作前馈项,允许循环曲柄满足位置和节奏跟踪目标。基于非光滑lyapunov的稳定性分析证明了半全局渐近跟踪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Neural Network Real-Time Control of a Motorized Functional Electrical Stimulation Cycle With an Uncertain Time-Varying Electromechanical Delay
Closed-loop functional electrical stimulation (FES) control methods are developed to facilitate motor-assisted cycling as a rehabilitative strategy for individuals with neurological disorders. One challenge for this type of control design is accounting for an input delay called the electromechanical delay (EMD) that exists between stimulation and the resultant muscle force. The EMD can cause an otherwise stable system to become unstable. A real-time deep neural network (DNN)-based motor control architecture is used to estimate the nonlinear and uncertain dynamics of each leg of the cycle-rider system. The DNN estimate of the system’s dynamics updates in real-time and is used as a feedforward term in the motor controller allowing the cycle crank to meet position and cadence tracking objectives. The nonsmooth Lyapunov-based stability analysis proves semiglobal asymptotic tracking.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信