神经网络中子谱展开的数据增强

IF 0.5 Q4 NUCLEAR SCIENCE & TECHNOLOGY
James McGreivy, J. Manfredi, Daniel Siefman
{"title":"神经网络中子谱展开的数据增强","authors":"James McGreivy, J. Manfredi, Daniel Siefman","doi":"10.3390/jne4010006","DOIUrl":null,"url":null,"abstract":"Neural networks require a large quantity of training spectra and detector responses in order to learn to solve the inverse problem of neutron spectrum unfolding. In addition, due to the under-determined nature of unfolding, non-physical spectra which would not be encountered in usage should not be included in the training set. While physically realistic training spectra are commonly determined experimentally or generated through Monte Carlo simulation, this can become prohibitively expensive when considering the quantity of spectra needed to effectively train an unfolding network. In this paper, we present three algorithms for the generation of large quantities of realistic and physically motivated neutron energy spectra. Using an IAEA compendium of 251 spectra, we compare the unfolding performance of neural networks trained on spectra from these algorithms, when unfolding real-world spectra, to two baselines. We also investigate general methods for evaluating the performance of and optimizing feature engineering algorithms.","PeriodicalId":16756,"journal":{"name":"Journal of Nuclear Engineering and Radiation Science","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data Augmentation for Neutron Spectrum Unfolding with Neural Networks\",\"authors\":\"James McGreivy, J. Manfredi, Daniel Siefman\",\"doi\":\"10.3390/jne4010006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural networks require a large quantity of training spectra and detector responses in order to learn to solve the inverse problem of neutron spectrum unfolding. In addition, due to the under-determined nature of unfolding, non-physical spectra which would not be encountered in usage should not be included in the training set. While physically realistic training spectra are commonly determined experimentally or generated through Monte Carlo simulation, this can become prohibitively expensive when considering the quantity of spectra needed to effectively train an unfolding network. In this paper, we present three algorithms for the generation of large quantities of realistic and physically motivated neutron energy spectra. Using an IAEA compendium of 251 spectra, we compare the unfolding performance of neural networks trained on spectra from these algorithms, when unfolding real-world spectra, to two baselines. We also investigate general methods for evaluating the performance of and optimizing feature engineering algorithms.\",\"PeriodicalId\":16756,\"journal\":{\"name\":\"Journal of Nuclear Engineering and Radiation Science\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nuclear Engineering and Radiation Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jne4010006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Engineering and Radiation Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jne4010006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

神经网络需要大量的训练谱和探测器响应来学习求解中子谱展开的逆问题。此外,由于展开的不确定性质,在使用中不会遇到的非物理光谱不应包括在训练集中。虽然物理上真实的训练谱通常是通过实验确定或通过蒙特卡罗模拟生成的,但考虑到有效训练展开网络所需的光谱数量,这可能会变得过于昂贵。本文提出了三种生成大量真实的物理激发中子能谱的算法。使用IAEA的251个光谱纲要,我们比较了在这些算法的光谱上训练的神经网络在展开真实光谱时与两个基线的展开性能。我们还研究了评估和优化特征工程算法性能的一般方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data Augmentation for Neutron Spectrum Unfolding with Neural Networks
Neural networks require a large quantity of training spectra and detector responses in order to learn to solve the inverse problem of neutron spectrum unfolding. In addition, due to the under-determined nature of unfolding, non-physical spectra which would not be encountered in usage should not be included in the training set. While physically realistic training spectra are commonly determined experimentally or generated through Monte Carlo simulation, this can become prohibitively expensive when considering the quantity of spectra needed to effectively train an unfolding network. In this paper, we present three algorithms for the generation of large quantities of realistic and physically motivated neutron energy spectra. Using an IAEA compendium of 251 spectra, we compare the unfolding performance of neural networks trained on spectra from these algorithms, when unfolding real-world spectra, to two baselines. We also investigate general methods for evaluating the performance of and optimizing feature engineering algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
56
期刊介绍: The Journal of Nuclear Engineering and Radiation Science is ASME’s latest title within the energy sector. The publication is for specialists in the nuclear/power engineering areas of industry, academia, and government.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信