N. Eftekhari, M. Kargar, F. Zamin, Nahid Rastakhiz, Z. Manafi
{"title":"黄钾铁矾的研究进展及利用潜力","authors":"N. Eftekhari, M. Kargar, F. Zamin, Nahid Rastakhiz, Z. Manafi","doi":"10.18280/acsm.440106","DOIUrl":null,"url":null,"abstract":"Received: 15 November 2019 Accepted: 28 January 2020 Jarosite is an effective scavenger for metals by the chemical formula AFe3(SO4)2(OH)6. In the present article, a comprehensive literature review is performed on the formation, decomposition, and utilization of jarosite. Based on reviewed studies, biological jarosite seeds can shorten the induction period and reduce the temperature limit in the jarosite precipitation. Also, the precipitation process of jarosite is more complete with biological jarosite seeds. The crystallization parameters such as Fe2(SO4)3 concentration, agitation speed, pH and temperature have significantly affected on the morphology and the particles size of jarosite. Decomposition of jarosite is carried out using two different methods thermal and hydrothermal. Jarosite seed is a potential resource, which has to be recycled in a technically feasible and environmentally friendly manner. Besides, it is observed that jarosites have several advantages such as control iron in hydrometallurgy, zinc industry, arsenic removal and other impurities, pigment, nanoparticles, filling materials, adsorption materials, acidic reagent, and catalytic materials.","PeriodicalId":7897,"journal":{"name":"Annales De Chimie-science Des Materiaux","volume":"38 1","pages":"43-52"},"PeriodicalIF":0.6000,"publicationDate":"2020-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"A Review on Various Aspects of Jarosite and Its Utilization Potentials\",\"authors\":\"N. Eftekhari, M. Kargar, F. Zamin, Nahid Rastakhiz, Z. Manafi\",\"doi\":\"10.18280/acsm.440106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Received: 15 November 2019 Accepted: 28 January 2020 Jarosite is an effective scavenger for metals by the chemical formula AFe3(SO4)2(OH)6. In the present article, a comprehensive literature review is performed on the formation, decomposition, and utilization of jarosite. Based on reviewed studies, biological jarosite seeds can shorten the induction period and reduce the temperature limit in the jarosite precipitation. Also, the precipitation process of jarosite is more complete with biological jarosite seeds. The crystallization parameters such as Fe2(SO4)3 concentration, agitation speed, pH and temperature have significantly affected on the morphology and the particles size of jarosite. Decomposition of jarosite is carried out using two different methods thermal and hydrothermal. Jarosite seed is a potential resource, which has to be recycled in a technically feasible and environmentally friendly manner. Besides, it is observed that jarosites have several advantages such as control iron in hydrometallurgy, zinc industry, arsenic removal and other impurities, pigment, nanoparticles, filling materials, adsorption materials, acidic reagent, and catalytic materials.\",\"PeriodicalId\":7897,\"journal\":{\"name\":\"Annales De Chimie-science Des Materiaux\",\"volume\":\"38 1\",\"pages\":\"43-52\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales De Chimie-science Des Materiaux\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18280/acsm.440106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De Chimie-science Des Materiaux","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/acsm.440106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
A Review on Various Aspects of Jarosite and Its Utilization Potentials
Received: 15 November 2019 Accepted: 28 January 2020 Jarosite is an effective scavenger for metals by the chemical formula AFe3(SO4)2(OH)6. In the present article, a comprehensive literature review is performed on the formation, decomposition, and utilization of jarosite. Based on reviewed studies, biological jarosite seeds can shorten the induction period and reduce the temperature limit in the jarosite precipitation. Also, the precipitation process of jarosite is more complete with biological jarosite seeds. The crystallization parameters such as Fe2(SO4)3 concentration, agitation speed, pH and temperature have significantly affected on the morphology and the particles size of jarosite. Decomposition of jarosite is carried out using two different methods thermal and hydrothermal. Jarosite seed is a potential resource, which has to be recycled in a technically feasible and environmentally friendly manner. Besides, it is observed that jarosites have several advantages such as control iron in hydrometallurgy, zinc industry, arsenic removal and other impurities, pigment, nanoparticles, filling materials, adsorption materials, acidic reagent, and catalytic materials.
期刊介绍:
The ACSM is concerning the cutting-edge innovations in solid material science. The journal covers a broad spectrum of scientific fields, ranging all the way from metallurgy, semiconductors, solid mineral compounds, organic macromolecular compounds to composite materials. The editorial board encourages the submission of original papers that deal with all aspects of material science, including but not limited to synthesis and processing, property characterization, reactivity and reaction kinetics, evolution in service, and recycling. The papers should provide new insights into solid materials and make a significant original contribution to knowledge.