{"title":"时间尺度上的代数和动态李雅普诺夫方程","authors":"John M. Davis, I. Gravagne, R. Marks, A. A. Ramos","doi":"10.1109/SSST.2010.5442815","DOIUrl":null,"url":null,"abstract":"We revisit the canonical continuous-time and discrete-time matrix algebraic and matrix differential equations that play a central role in Lyapunov-based stability arguments. The goal is to generalize and extend these types of equations and subsequent analysis to dynamical systems on domains other than R or Z, called “time scales”, e.g. nonuniform discrete domains or domains consisting of a mixture of discrete and continuous components. In particular, we compare and contrast a generalization of the algebraic Lyapunov equation and the dynamic Lyapunov equation in this time scales setting.","PeriodicalId":6463,"journal":{"name":"2010 42nd Southeastern Symposium on System Theory (SSST)","volume":"11 1 1","pages":"329-334"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Algebraic and dynamic Lyapunov equations on time scales\",\"authors\":\"John M. Davis, I. Gravagne, R. Marks, A. A. Ramos\",\"doi\":\"10.1109/SSST.2010.5442815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We revisit the canonical continuous-time and discrete-time matrix algebraic and matrix differential equations that play a central role in Lyapunov-based stability arguments. The goal is to generalize and extend these types of equations and subsequent analysis to dynamical systems on domains other than R or Z, called “time scales”, e.g. nonuniform discrete domains or domains consisting of a mixture of discrete and continuous components. In particular, we compare and contrast a generalization of the algebraic Lyapunov equation and the dynamic Lyapunov equation in this time scales setting.\",\"PeriodicalId\":6463,\"journal\":{\"name\":\"2010 42nd Southeastern Symposium on System Theory (SSST)\",\"volume\":\"11 1 1\",\"pages\":\"329-334\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 42nd Southeastern Symposium on System Theory (SSST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSST.2010.5442815\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 42nd Southeastern Symposium on System Theory (SSST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSST.2010.5442815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Algebraic and dynamic Lyapunov equations on time scales
We revisit the canonical continuous-time and discrete-time matrix algebraic and matrix differential equations that play a central role in Lyapunov-based stability arguments. The goal is to generalize and extend these types of equations and subsequent analysis to dynamical systems on domains other than R or Z, called “time scales”, e.g. nonuniform discrete domains or domains consisting of a mixture of discrete and continuous components. In particular, we compare and contrast a generalization of the algebraic Lyapunov equation and the dynamic Lyapunov equation in this time scales setting.