MalariaNet:用于自动疟疾检测的计算高效卷积神经网络架构

Rohan Bhansali
{"title":"MalariaNet:用于自动疟疾检测的计算高效卷积神经网络架构","authors":"Rohan Bhansali","doi":"10.17577/ijertv9is120158","DOIUrl":null,"url":null,"abstract":"— Despite much progress in detection and treatment, malaria remains one of the most prevalent diseases on earth, both in terms of incidence and death rate. Multiple studies have shown that early detection of malaria is paramount to preventing fatal outcomes; however, current testing methods have notable issues involving cost and accessibility. As a result, deep learning algorithms have been developed for malaria detection and have achieved state of the art results in rapid diagnosis; however, it has been noted that the computational expense of running elaborate models makes deep learning based detection methods inaccessible in remote areas of the world. We develop a computationally efficient, relatively shallow neural network architecture that can diagnose malaria from cell images obtained from thin blood smear slides. Specifically, our algorithm, dubbed MalariaNet, is a 7-layer convolutional neural network trained using the Adaptive Moment Estimation algorithm on the open source NIH malaria dataset, containing 27,588 images of parasitized and uninfected cells. We report that MalariaNet achieves an accuracy of 0.968, F1 score of 0.955, precision of 0.946, and recall of 0.974. We hope that our computationally considerate model inspires more research in producing accessible artificial intelligence solutions for disease detection tasks.","PeriodicalId":13986,"journal":{"name":"International Journal of Engineering Research and","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"MalariaNet: A Computationally Efficient Convolutional Neural Network Architecture for Automated Malaria Detection\",\"authors\":\"Rohan Bhansali\",\"doi\":\"10.17577/ijertv9is120158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"— Despite much progress in detection and treatment, malaria remains one of the most prevalent diseases on earth, both in terms of incidence and death rate. Multiple studies have shown that early detection of malaria is paramount to preventing fatal outcomes; however, current testing methods have notable issues involving cost and accessibility. As a result, deep learning algorithms have been developed for malaria detection and have achieved state of the art results in rapid diagnosis; however, it has been noted that the computational expense of running elaborate models makes deep learning based detection methods inaccessible in remote areas of the world. We develop a computationally efficient, relatively shallow neural network architecture that can diagnose malaria from cell images obtained from thin blood smear slides. Specifically, our algorithm, dubbed MalariaNet, is a 7-layer convolutional neural network trained using the Adaptive Moment Estimation algorithm on the open source NIH malaria dataset, containing 27,588 images of parasitized and uninfected cells. We report that MalariaNet achieves an accuracy of 0.968, F1 score of 0.955, precision of 0.946, and recall of 0.974. We hope that our computationally considerate model inspires more research in producing accessible artificial intelligence solutions for disease detection tasks.\",\"PeriodicalId\":13986,\"journal\":{\"name\":\"International Journal of Engineering Research and\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering Research and\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17577/ijertv9is120158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Research and","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17577/ijertv9is120158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
MalariaNet: A Computationally Efficient Convolutional Neural Network Architecture for Automated Malaria Detection
— Despite much progress in detection and treatment, malaria remains one of the most prevalent diseases on earth, both in terms of incidence and death rate. Multiple studies have shown that early detection of malaria is paramount to preventing fatal outcomes; however, current testing methods have notable issues involving cost and accessibility. As a result, deep learning algorithms have been developed for malaria detection and have achieved state of the art results in rapid diagnosis; however, it has been noted that the computational expense of running elaborate models makes deep learning based detection methods inaccessible in remote areas of the world. We develop a computationally efficient, relatively shallow neural network architecture that can diagnose malaria from cell images obtained from thin blood smear slides. Specifically, our algorithm, dubbed MalariaNet, is a 7-layer convolutional neural network trained using the Adaptive Moment Estimation algorithm on the open source NIH malaria dataset, containing 27,588 images of parasitized and uninfected cells. We report that MalariaNet achieves an accuracy of 0.968, F1 score of 0.955, precision of 0.946, and recall of 0.974. We hope that our computationally considerate model inspires more research in producing accessible artificial intelligence solutions for disease detection tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信