基于模型的聚类

Bettina Grun
{"title":"基于模型的聚类","authors":"Bettina Grun","doi":"10.1201/9780429055911-8","DOIUrl":null,"url":null,"abstract":"Mixture models extend the toolbox of clustering methods available to the data analyst. They allow for an explicit definition of the cluster shapes and structure within a probabilistic framework and exploit estimation and inference techniques available for statistical models in general. In this chapter an introduction to cluster analysis is provided, model-based clustering is related to standard heuristic clustering methods and an overview on different ways to specify the cluster model is given. Post-processing methods to determine a suitable clustering, infer cluster distribution characteristics and validate the cluster solution are discussed. The versatility of the model-based clustering approach is illustrated by giving an overview on the different areas of applications.","PeriodicalId":12943,"journal":{"name":"Handbook of Mixture Analysis","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Model-Based Clustering\",\"authors\":\"Bettina Grun\",\"doi\":\"10.1201/9780429055911-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mixture models extend the toolbox of clustering methods available to the data analyst. They allow for an explicit definition of the cluster shapes and structure within a probabilistic framework and exploit estimation and inference techniques available for statistical models in general. In this chapter an introduction to cluster analysis is provided, model-based clustering is related to standard heuristic clustering methods and an overview on different ways to specify the cluster model is given. Post-processing methods to determine a suitable clustering, infer cluster distribution characteristics and validate the cluster solution are discussed. The versatility of the model-based clustering approach is illustrated by giving an overview on the different areas of applications.\",\"PeriodicalId\":12943,\"journal\":{\"name\":\"Handbook of Mixture Analysis\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Handbook of Mixture Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/9780429055911-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of Mixture Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9780429055911-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

混合模型扩展了数据分析人员可用的聚类方法工具箱。它们允许在概率框架内明确定义簇的形状和结构,并利用一般统计模型可用的估计和推理技术。本章对聚类分析进行了介绍,基于模型的聚类与标准启发式聚类方法相关,并概述了指定聚类模型的不同方法。讨论了确定合适的聚类、推断聚类分布特征和验证聚类解的后处理方法。通过概述应用程序的不同领域,可以说明基于模型的集群方法的多功能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model-Based Clustering
Mixture models extend the toolbox of clustering methods available to the data analyst. They allow for an explicit definition of the cluster shapes and structure within a probabilistic framework and exploit estimation and inference techniques available for statistical models in general. In this chapter an introduction to cluster analysis is provided, model-based clustering is related to standard heuristic clustering methods and an overview on different ways to specify the cluster model is given. Post-processing methods to determine a suitable clustering, infer cluster distribution characteristics and validate the cluster solution are discussed. The versatility of the model-based clustering approach is illustrated by giving an overview on the different areas of applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信