{"title":"基于模型的聚类","authors":"Bettina Grun","doi":"10.1201/9780429055911-8","DOIUrl":null,"url":null,"abstract":"Mixture models extend the toolbox of clustering methods available to the data analyst. They allow for an explicit definition of the cluster shapes and structure within a probabilistic framework and exploit estimation and inference techniques available for statistical models in general. In this chapter an introduction to cluster analysis is provided, model-based clustering is related to standard heuristic clustering methods and an overview on different ways to specify the cluster model is given. Post-processing methods to determine a suitable clustering, infer cluster distribution characteristics and validate the cluster solution are discussed. The versatility of the model-based clustering approach is illustrated by giving an overview on the different areas of applications.","PeriodicalId":12943,"journal":{"name":"Handbook of Mixture Analysis","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Model-Based Clustering\",\"authors\":\"Bettina Grun\",\"doi\":\"10.1201/9780429055911-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mixture models extend the toolbox of clustering methods available to the data analyst. They allow for an explicit definition of the cluster shapes and structure within a probabilistic framework and exploit estimation and inference techniques available for statistical models in general. In this chapter an introduction to cluster analysis is provided, model-based clustering is related to standard heuristic clustering methods and an overview on different ways to specify the cluster model is given. Post-processing methods to determine a suitable clustering, infer cluster distribution characteristics and validate the cluster solution are discussed. The versatility of the model-based clustering approach is illustrated by giving an overview on the different areas of applications.\",\"PeriodicalId\":12943,\"journal\":{\"name\":\"Handbook of Mixture Analysis\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Handbook of Mixture Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/9780429055911-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of Mixture Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9780429055911-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mixture models extend the toolbox of clustering methods available to the data analyst. They allow for an explicit definition of the cluster shapes and structure within a probabilistic framework and exploit estimation and inference techniques available for statistical models in general. In this chapter an introduction to cluster analysis is provided, model-based clustering is related to standard heuristic clustering methods and an overview on different ways to specify the cluster model is given. Post-processing methods to determine a suitable clustering, infer cluster distribution characteristics and validate the cluster solution are discussed. The versatility of the model-based clustering approach is illustrated by giving an overview on the different areas of applications.