聚焦对数非线性Schrödinger方程多孤子的存在性

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Guillaume Ferriere
{"title":"聚焦对数非线性Schrödinger方程多孤子的存在性","authors":"Guillaume Ferriere","doi":"10.1016/j.anihpc.2020.09.002","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>We consider the logarithmic Schrödinger equation (logNLS) in the focusing regime. For this equation, Gaussian </span>initial data<span> remains Gaussian. In particular, the Gausson - a time-independent Gaussian function - is an orbitally stable solution. In this paper, we construct </span></span><em>multi-solitons</em> (or <em>multi-Gaussons</em>) for logNLS, with estimates in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>∩</mo><mi>F</mi><mo>(</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>)</mo></math></span>. We also construct solutions to logNLS behaving (in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>) like a sum of <em>N</em> Gaussian solutions with different speeds (which we call <em>multi-gaussian</em>). In both cases, the convergence (as <span><math><mi>t</mi><mo>→</mo><mo>∞</mo></math></span>) is faster than exponential. We also prove a rigidity result on these constructed multi-gaussians and multi-solitons, showing that they are the only ones with such a convergence.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.anihpc.2020.09.002","citationCount":"15","resultStr":"{\"title\":\"Existence of multi-solitons for the focusing Logarithmic Non-Linear Schrödinger Equation\",\"authors\":\"Guillaume Ferriere\",\"doi\":\"10.1016/j.anihpc.2020.09.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>We consider the logarithmic Schrödinger equation (logNLS) in the focusing regime. For this equation, Gaussian </span>initial data<span> remains Gaussian. In particular, the Gausson - a time-independent Gaussian function - is an orbitally stable solution. In this paper, we construct </span></span><em>multi-solitons</em> (or <em>multi-Gaussons</em>) for logNLS, with estimates in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>∩</mo><mi>F</mi><mo>(</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>)</mo></math></span>. We also construct solutions to logNLS behaving (in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>) like a sum of <em>N</em> Gaussian solutions with different speeds (which we call <em>multi-gaussian</em>). In both cases, the convergence (as <span><math><mi>t</mi><mo>→</mo><mo>∞</mo></math></span>) is faster than exponential. We also prove a rigidity result on these constructed multi-gaussians and multi-solitons, showing that they are the only ones with such a convergence.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.anihpc.2020.09.002\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S029414492030086X\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S029414492030086X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 15

摘要

我们在聚焦区考虑对数Schrödinger方程(logls)。对于这个方程,高斯初始数据仍然是高斯的。特别地,高斯函数——一个与时间无关的高斯函数——是一个轨道稳定解。在本文中,我们构造了logNLS的多孤子(或多高斯子),其估计在H1∩F(H1)。我们还构造了logNLS的解,其行为(在L2中)类似于N个不同速度的高斯解的和(我们称之为多高斯)。在这两种情况下,收敛(当t→∞)都比指数更快。我们还证明了这些构造的多高斯和多孤子的一个刚性结果,表明它们是唯一具有这种收敛性的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of multi-solitons for the focusing Logarithmic Non-Linear Schrödinger Equation

We consider the logarithmic Schrödinger equation (logNLS) in the focusing regime. For this equation, Gaussian initial data remains Gaussian. In particular, the Gausson - a time-independent Gaussian function - is an orbitally stable solution. In this paper, we construct multi-solitons (or multi-Gaussons) for logNLS, with estimates in H1F(H1). We also construct solutions to logNLS behaving (in L2) like a sum of N Gaussian solutions with different speeds (which we call multi-gaussian). In both cases, the convergence (as t) is faster than exponential. We also prove a rigidity result on these constructed multi-gaussians and multi-solitons, showing that they are the only ones with such a convergence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信