一种多网格增强迭代ADI方法

Shumin Wang, Ji Chen
{"title":"一种多网格增强迭代ADI方法","authors":"Shumin Wang, Ji Chen","doi":"10.1109/MWSYM.2005.1516559","DOIUrl":null,"url":null,"abstract":"We propose a multigrid Alternating-Direction Implicit (ADI) method for solving Maxwell's equations in this paper. This method is based on the interpretation of the ADI method as an iterative solver of the Crank-Nicolson (CN) scheme. By introducing a special solving procedure for the residual equation within the ADI framework, multigrid schemes are incorporated into the iterative ADI method. The accuracy and efficiency of the proposed multigrid ADI method are further demonstrated by numerical examples.","PeriodicalId":13133,"journal":{"name":"IEEE MTT-S International Microwave Symposium Digest, 2005.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2005-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multigrid-Enhanced Iterative ADI Method\",\"authors\":\"Shumin Wang, Ji Chen\",\"doi\":\"10.1109/MWSYM.2005.1516559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a multigrid Alternating-Direction Implicit (ADI) method for solving Maxwell's equations in this paper. This method is based on the interpretation of the ADI method as an iterative solver of the Crank-Nicolson (CN) scheme. By introducing a special solving procedure for the residual equation within the ADI framework, multigrid schemes are incorporated into the iterative ADI method. The accuracy and efficiency of the proposed multigrid ADI method are further demonstrated by numerical examples.\",\"PeriodicalId\":13133,\"journal\":{\"name\":\"IEEE MTT-S International Microwave Symposium Digest, 2005.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE MTT-S International Microwave Symposium Digest, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSYM.2005.1516559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE MTT-S International Microwave Symposium Digest, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2005.1516559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出一种求解麦克斯韦方程组的多网格交替方向隐式(ADI)方法。该方法基于将ADI方法解释为Crank-Nicolson (CN)格式的迭代求解器。通过引入ADI框架下残差方程的特殊求解过程,将多网格格式纳入迭代ADI方法中。数值算例进一步验证了该方法的精度和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Multigrid-Enhanced Iterative ADI Method
We propose a multigrid Alternating-Direction Implicit (ADI) method for solving Maxwell's equations in this paper. This method is based on the interpretation of the ADI method as an iterative solver of the Crank-Nicolson (CN) scheme. By introducing a special solving procedure for the residual equation within the ADI framework, multigrid schemes are incorporated into the iterative ADI method. The accuracy and efficiency of the proposed multigrid ADI method are further demonstrated by numerical examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信