与交换环相关的零因子图的度量和上维

IF 0.3 Q4 COMPUTER SCIENCE, THEORY & METHODS
S. Pirzada, M. Aijaz
{"title":"与交换环相关的零因子图的度量和上维","authors":"S. Pirzada, M. Aijaz","doi":"10.2478/ausi-2020-0006","DOIUrl":null,"url":null,"abstract":"Abstract Let R be a commutative ring with Z*(R) as the set of non-zero zero divisors. The zero divisor graph of R, denoted by Γ(R), is the graph whose vertex set is Z*(R), where two distinct vertices x and y are adjacent if and only if xy = 0. In this paper, we investigate the metric dimension dim(Γ(R)) and upper dimension dim+(Γ(R)) of zero divisor graphs of commutative rings. For zero divisor graphs Γ(R) associated to finite commutative rings R with unity 1 ≠ 0, we conjecture that dim+(Γ(R)) = dim(Γ(R)), with one exception that R≅Π𝕑2n {\\rm{R}} \\cong \\Pi {\\rm\\mathbb{Z}}_2^{\\rm{n}} , n ≥ 4. We prove that this conjecture is true for several classes of rings. We also provide combinatorial formulae for computing the metric and upper dimension of zero divisor graphs of certain classes of commutative rings besides giving bounds for the upper dimension of zero divisor graphs of rings.","PeriodicalId":41480,"journal":{"name":"Acta Universitatis Sapientiae Informatica","volume":"23 1","pages":"101 - 84"},"PeriodicalIF":0.3000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Metric and upper dimension of zero divisor graphs associated to commutative rings\",\"authors\":\"S. Pirzada, M. Aijaz\",\"doi\":\"10.2478/ausi-2020-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let R be a commutative ring with Z*(R) as the set of non-zero zero divisors. The zero divisor graph of R, denoted by Γ(R), is the graph whose vertex set is Z*(R), where two distinct vertices x and y are adjacent if and only if xy = 0. In this paper, we investigate the metric dimension dim(Γ(R)) and upper dimension dim+(Γ(R)) of zero divisor graphs of commutative rings. For zero divisor graphs Γ(R) associated to finite commutative rings R with unity 1 ≠ 0, we conjecture that dim+(Γ(R)) = dim(Γ(R)), with one exception that R≅Π𝕑2n {\\\\rm{R}} \\\\cong \\\\Pi {\\\\rm\\\\mathbb{Z}}_2^{\\\\rm{n}} , n ≥ 4. We prove that this conjecture is true for several classes of rings. We also provide combinatorial formulae for computing the metric and upper dimension of zero divisor graphs of certain classes of commutative rings besides giving bounds for the upper dimension of zero divisor graphs of rings.\",\"PeriodicalId\":41480,\"journal\":{\"name\":\"Acta Universitatis Sapientiae Informatica\",\"volume\":\"23 1\",\"pages\":\"101 - 84\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Universitatis Sapientiae Informatica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausi-2020-0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitatis Sapientiae Informatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausi-2020-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 7

摘要

摘要设R是一个以Z*(R)为非零零因子集合的交换环。表示为Γ(R)的R的零因子图是顶点集为Z*(R)的图,其中两个不同的顶点x和y相邻当且仅当xy = 0。本文研究了交换环的零因子图的度量维dim(Γ(R))和上维dim+(Γ(R))。对于与单位1≠0的有限交换环R相关的零因子图Γ(R),我们推测dim+(Γ(R)) = dim(Γ(R)),但有一个例外R = Π𝕑2n {\rm{R}}\cong\Pi{\rm\mathbb{Z}} _2^, {\rm{n}}n≥4。我们证明了这个猜想对几类环是成立的。除了给出环的零因子图的上维的界外,我们还给出了计算某些可交换环的零因子图的度规和上维的组合公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metric and upper dimension of zero divisor graphs associated to commutative rings
Abstract Let R be a commutative ring with Z*(R) as the set of non-zero zero divisors. The zero divisor graph of R, denoted by Γ(R), is the graph whose vertex set is Z*(R), where two distinct vertices x and y are adjacent if and only if xy = 0. In this paper, we investigate the metric dimension dim(Γ(R)) and upper dimension dim+(Γ(R)) of zero divisor graphs of commutative rings. For zero divisor graphs Γ(R) associated to finite commutative rings R with unity 1 ≠ 0, we conjecture that dim+(Γ(R)) = dim(Γ(R)), with one exception that R≅Π𝕑2n {\rm{R}} \cong \Pi {\rm\mathbb{Z}}_2^{\rm{n}} , n ≥ 4. We prove that this conjecture is true for several classes of rings. We also provide combinatorial formulae for computing the metric and upper dimension of zero divisor graphs of certain classes of commutative rings besides giving bounds for the upper dimension of zero divisor graphs of rings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Universitatis Sapientiae Informatica
Acta Universitatis Sapientiae Informatica COMPUTER SCIENCE, THEORY & METHODS-
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信