由非线性三维弹性推导出的Novozhilov-Donnell线性模型

Khalid Elamri , Aziz Hamdouni , Olivier Millet
{"title":"由非线性三维弹性推导出的Novozhilov-Donnell线性模型","authors":"Khalid Elamri ,&nbsp;Aziz Hamdouni ,&nbsp;Olivier Millet","doi":"10.1016/S1287-4620(99)90003-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we present a justification of the linear Novozhilov-Donnell model using an asymptotic approach. This model has already been obtained from linearized three-dimensional elasticity. We propose here to justify this model directly from the nonlinear three-dimensional elasticity equations. In the case of shallow shells and for small enough applied loads, we prove that the first term of the strain measures is linear with respect to the displacements. The equilibrium equations of the asymptotic model are those of the Novozhilov-Donnell model. So, the domain of validity of the linear Novozhilov-Donnell model is clearly determined.</p></div>","PeriodicalId":100303,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy","volume":"327 13","pages":"Pages 1285-1290"},"PeriodicalIF":0.0000,"publicationDate":"1999-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1287-4620(99)90003-0","citationCount":"5","resultStr":"{\"title\":\"Le modèle de Novozhilov-Donnell linéaire déduit de l'élasticité tridimensionnelle non linéaire\",\"authors\":\"Khalid Elamri ,&nbsp;Aziz Hamdouni ,&nbsp;Olivier Millet\",\"doi\":\"10.1016/S1287-4620(99)90003-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we present a justification of the linear Novozhilov-Donnell model using an asymptotic approach. This model has already been obtained from linearized three-dimensional elasticity. We propose here to justify this model directly from the nonlinear three-dimensional elasticity equations. In the case of shallow shells and for small enough applied loads, we prove that the first term of the strain measures is linear with respect to the displacements. The equilibrium equations of the asymptotic model are those of the Novozhilov-Donnell model. So, the domain of validity of the linear Novozhilov-Donnell model is clearly determined.</p></div>\",\"PeriodicalId\":100303,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy\",\"volume\":\"327 13\",\"pages\":\"Pages 1285-1290\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1287-4620(99)90003-0\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1287462099900030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1287462099900030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文用渐近方法证明了线性Novozhilov-Donnell模型。该模型已由线性化的三维弹性力学得到。我们在这里建议直接从非线性三维弹性方程来证明这个模型。在浅壳和足够小的施加载荷的情况下,我们证明了应变测量的第一项与位移是线性的。渐近模型的平衡方程是Novozhilov-Donnell模型的平衡方程。从而明确了线性Novozhilov-Donnell模型的有效域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Le modèle de Novozhilov-Donnell linéaire déduit de l'élasticité tridimensionnelle non linéaire

In this paper, we present a justification of the linear Novozhilov-Donnell model using an asymptotic approach. This model has already been obtained from linearized three-dimensional elasticity. We propose here to justify this model directly from the nonlinear three-dimensional elasticity equations. In the case of shallow shells and for small enough applied loads, we prove that the first term of the strain measures is linear with respect to the displacements. The equilibrium equations of the asymptotic model are those of the Novozhilov-Donnell model. So, the domain of validity of the linear Novozhilov-Donnell model is clearly determined.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信