焊接填料对Böhler W350 isoloc热成形工具钢力学和腐蚀性能的影响

IF 1.3 Q3 ENGINEERING, MECHANICAL
Benedek Szovák, Krisztián Korsós, D. Kemény, Péter Szalva
{"title":"焊接填料对Böhler W350 isoloc热成形工具钢力学和腐蚀性能的影响","authors":"Benedek Szovák, Krisztián Korsós, D. Kemény, Péter Szalva","doi":"10.3311/ppme.21435","DOIUrl":null,"url":null,"abstract":"In this study, the effects of different welding filler materials were examined in the case of repair welding of pressure infiltration casting tool made out of Böhler W350 ISOBLOC hot forming tool steel. Three additional welding filler materials were used: Böhler W350 ISOBLOC (same as the raw material), Böhler W300 ISOBLOC and Anviloy® 1150 tungsten alloy. The welds were created with TIG welding method. The used welding filler material has an impact on the mechanical and corrosive properties of the tool. The hardness of the weld was measured to determine its resistance against mechanical stress. The corrosion rate was measured because molten aluminium corrodes workpieces due to its high chemical activity. It was concluded that a single-pass weld corrosion speed is 0.142 ± 0.010 mm/year while a weld containing multiple layers and passes has the corrosion speed of 0.069 ± 0.005 mm/year which is approximately 48% of the corrosion speed of the single-pass weld. Furthermore, the hardness of a weld made with W350 welding filler material significantly drops in the upper layers of the weld, down to 273 HV1 while the hardness of the base material is 495 ± 8 HV1. The results show that the multiple layers and passes welds have better corrosion resistance and less hardness than the single-pass weld.","PeriodicalId":43630,"journal":{"name":"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING","volume":"83 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of the Welding Filler Material on the Mechanical and Corrosive Behavior of Böhler W350 ISOBLOC Hot Forming Tool Steel\",\"authors\":\"Benedek Szovák, Krisztián Korsós, D. Kemény, Péter Szalva\",\"doi\":\"10.3311/ppme.21435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the effects of different welding filler materials were examined in the case of repair welding of pressure infiltration casting tool made out of Böhler W350 ISOBLOC hot forming tool steel. Three additional welding filler materials were used: Böhler W350 ISOBLOC (same as the raw material), Böhler W300 ISOBLOC and Anviloy® 1150 tungsten alloy. The welds were created with TIG welding method. The used welding filler material has an impact on the mechanical and corrosive properties of the tool. The hardness of the weld was measured to determine its resistance against mechanical stress. The corrosion rate was measured because molten aluminium corrodes workpieces due to its high chemical activity. It was concluded that a single-pass weld corrosion speed is 0.142 ± 0.010 mm/year while a weld containing multiple layers and passes has the corrosion speed of 0.069 ± 0.005 mm/year which is approximately 48% of the corrosion speed of the single-pass weld. Furthermore, the hardness of a weld made with W350 welding filler material significantly drops in the upper layers of the weld, down to 273 HV1 while the hardness of the base material is 495 ± 8 HV1. The results show that the multiple layers and passes welds have better corrosion resistance and less hardness than the single-pass weld.\",\"PeriodicalId\":43630,\"journal\":{\"name\":\"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING\",\"volume\":\"83 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3311/ppme.21435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3311/ppme.21435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

以Böhler W350 ISOBLOC热成形工具钢为材料,研究了不同焊接填充材料对压力渗透铸造工具补焊的影响。另外使用了三种焊接填充材料:Böhler W350 ISOBLOC(与原材料相同),Böhler W300 ISOBLOC和Anviloy®1150钨合金。焊缝采用TIG焊法焊接。使用的焊接填充材料对工具的机械性能和腐蚀性能有影响。测量了焊缝的硬度,以确定其抗机械应力的能力。由于铝液的化学活性高,腐蚀工件,因此测量了腐蚀速率。结果表明,单道焊缝的腐蚀速度为0.142±0.010 mm/年,而多层多道焊缝的腐蚀速度为0.069±0.005 mm/年,约为单道焊缝腐蚀速度的48%。此外,W350焊接填料的焊缝硬度在焊缝上层明显下降,降至273 HV1,而母材的硬度为495±8 HV1。结果表明,与单道焊缝相比,多层和道焊缝具有更好的耐腐蚀性能和较低的硬度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of the Welding Filler Material on the Mechanical and Corrosive Behavior of Böhler W350 ISOBLOC Hot Forming Tool Steel
In this study, the effects of different welding filler materials were examined in the case of repair welding of pressure infiltration casting tool made out of Böhler W350 ISOBLOC hot forming tool steel. Three additional welding filler materials were used: Böhler W350 ISOBLOC (same as the raw material), Böhler W300 ISOBLOC and Anviloy® 1150 tungsten alloy. The welds were created with TIG welding method. The used welding filler material has an impact on the mechanical and corrosive properties of the tool. The hardness of the weld was measured to determine its resistance against mechanical stress. The corrosion rate was measured because molten aluminium corrodes workpieces due to its high chemical activity. It was concluded that a single-pass weld corrosion speed is 0.142 ± 0.010 mm/year while a weld containing multiple layers and passes has the corrosion speed of 0.069 ± 0.005 mm/year which is approximately 48% of the corrosion speed of the single-pass weld. Furthermore, the hardness of a weld made with W350 welding filler material significantly drops in the upper layers of the weld, down to 273 HV1 while the hardness of the base material is 495 ± 8 HV1. The results show that the multiple layers and passes welds have better corrosion resistance and less hardness than the single-pass weld.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
7.70%
发文量
33
审稿时长
20 weeks
期刊介绍: Periodica Polytechnica is a publisher of the Budapest University of Technology and Economics. It publishes seven international journals (Architecture, Chemical Engineering, Civil Engineering, Electrical Engineering, Mechanical Engineering, Social and Management Sciences, Transportation Engineering). The journals have free electronic versions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信