{"title":"离散莫尔斯流的Yamabe型热流","authors":"Ma Li null, Weiqiong Zheng","doi":"10.4208/jpde.v36.n1.3","DOIUrl":null,"url":null,"abstract":". In this paper, we study the discrete Morse flow for either Yamabe type heat flow or nonlinear heat flow on a bounded regular domain in the whole space. We show that under suitable assumptions on the initial data g one has a weak approxi-mate discrete Morse flow for the Yamabe type heat flow on any time interval. This phenomenon is very different from the smooth Yamabe flow, where the finite time blow up may exist.","PeriodicalId":43504,"journal":{"name":"Journal of Partial Differential Equations","volume":"31 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrete Morse Flow for Yamabe Type Heat Flows\",\"authors\":\"Ma Li null, Weiqiong Zheng\",\"doi\":\"10.4208/jpde.v36.n1.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, we study the discrete Morse flow for either Yamabe type heat flow or nonlinear heat flow on a bounded regular domain in the whole space. We show that under suitable assumptions on the initial data g one has a weak approxi-mate discrete Morse flow for the Yamabe type heat flow on any time interval. This phenomenon is very different from the smooth Yamabe flow, where the finite time blow up may exist.\",\"PeriodicalId\":43504,\"journal\":{\"name\":\"Journal of Partial Differential Equations\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4208/jpde.v36.n1.3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/jpde.v36.n1.3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
. In this paper, we study the discrete Morse flow for either Yamabe type heat flow or nonlinear heat flow on a bounded regular domain in the whole space. We show that under suitable assumptions on the initial data g one has a weak approxi-mate discrete Morse flow for the Yamabe type heat flow on any time interval. This phenomenon is very different from the smooth Yamabe flow, where the finite time blow up may exist.