离散莫尔斯流的Yamabe型热流

IF 0.3 4区 数学 Q4 MATHEMATICS, APPLIED
Ma Li null, Weiqiong Zheng
{"title":"离散莫尔斯流的Yamabe型热流","authors":"Ma Li null, Weiqiong Zheng","doi":"10.4208/jpde.v36.n1.3","DOIUrl":null,"url":null,"abstract":". In this paper, we study the discrete Morse flow for either Yamabe type heat flow or nonlinear heat flow on a bounded regular domain in the whole space. We show that under suitable assumptions on the initial data g one has a weak approxi-mate discrete Morse flow for the Yamabe type heat flow on any time interval. This phenomenon is very different from the smooth Yamabe flow, where the finite time blow up may exist.","PeriodicalId":43504,"journal":{"name":"Journal of Partial Differential Equations","volume":"31 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrete Morse Flow for Yamabe Type Heat Flows\",\"authors\":\"Ma Li null, Weiqiong Zheng\",\"doi\":\"10.4208/jpde.v36.n1.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, we study the discrete Morse flow for either Yamabe type heat flow or nonlinear heat flow on a bounded regular domain in the whole space. We show that under suitable assumptions on the initial data g one has a weak approxi-mate discrete Morse flow for the Yamabe type heat flow on any time interval. This phenomenon is very different from the smooth Yamabe flow, where the finite time blow up may exist.\",\"PeriodicalId\":43504,\"journal\":{\"name\":\"Journal of Partial Differential Equations\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4208/jpde.v36.n1.3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/jpde.v36.n1.3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

. 本文研究了整个空间中有界正则域上Yamabe型热流和非线性热流的离散莫尔斯流。我们证明了在初始数据g的适当假设下,在任何时间间隔上的Yamabe型热流都具有弱近似离散莫尔斯流。这种现象与平滑的山边流非常不同,后者可能存在有限时间的爆炸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discrete Morse Flow for Yamabe Type Heat Flows
. In this paper, we study the discrete Morse flow for either Yamabe type heat flow or nonlinear heat flow on a bounded regular domain in the whole space. We show that under suitable assumptions on the initial data g one has a weak approxi-mate discrete Morse flow for the Yamabe type heat flow on any time interval. This phenomenon is very different from the smooth Yamabe flow, where the finite time blow up may exist.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
33.30%
发文量
551
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信