使用消费者设备对额叶脑电图不对称进行数据驱动验证

D. Friedman, Shai Shapira, L. Jacobson, M. Gruberger
{"title":"使用消费者设备对额叶脑电图不对称进行数据驱动验证","authors":"D. Friedman, Shai Shapira, L. Jacobson, M. Gruberger","doi":"10.1109/ACII.2015.7344686","DOIUrl":null,"url":null,"abstract":"Affective computing requires a reliable method to obtain real time information regarding affective state, and one of the promising avenues is via electroencephalography (EEG). We have performed a study intended to test whether a low cost EEG device targeted at consumers can be used to measure extreme emotional valence. One of the most studied frameworks related to the way affect is reflected in EEG is based on frontal hemispheric asymmetry. Our results indicate that a simple replication of the methods derived from this hypothesis might not be sufficient. However, using a data-driven approach based on feature engineering and machine learning, we describe a method that can reliably measure valence with the EPOC device. We discuss our study in the context of the theoretical and empirical background for frontal asymmetry.","PeriodicalId":6863,"journal":{"name":"2015 International Conference on Affective Computing and Intelligent Interaction (ACII)","volume":"7 1","pages":"930-937"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A data-driven validation of frontal EEG asymmetry using a consumer device\",\"authors\":\"D. Friedman, Shai Shapira, L. Jacobson, M. Gruberger\",\"doi\":\"10.1109/ACII.2015.7344686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Affective computing requires a reliable method to obtain real time information regarding affective state, and one of the promising avenues is via electroencephalography (EEG). We have performed a study intended to test whether a low cost EEG device targeted at consumers can be used to measure extreme emotional valence. One of the most studied frameworks related to the way affect is reflected in EEG is based on frontal hemispheric asymmetry. Our results indicate that a simple replication of the methods derived from this hypothesis might not be sufficient. However, using a data-driven approach based on feature engineering and machine learning, we describe a method that can reliably measure valence with the EPOC device. We discuss our study in the context of the theoretical and empirical background for frontal asymmetry.\",\"PeriodicalId\":6863,\"journal\":{\"name\":\"2015 International Conference on Affective Computing and Intelligent Interaction (ACII)\",\"volume\":\"7 1\",\"pages\":\"930-937\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Affective Computing and Intelligent Interaction (ACII)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACII.2015.7344686\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Affective Computing and Intelligent Interaction (ACII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACII.2015.7344686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

情感计算需要一种可靠的方法来获取有关情感状态的实时信息,而通过脑电图(EEG)是一种有前途的途径。我们进行了一项研究,旨在测试针对消费者的低成本EEG设备是否可以用于测量极端情绪效价。关于影响在脑电图中反映的方式,研究最多的框架之一是基于额半球不对称的。我们的结果表明,从这一假设中得出的方法的简单复制可能是不够的。然而,使用基于特征工程和机器学习的数据驱动方法,我们描述了一种可以可靠地测量EPOC设备价的方法。我们在正面不对称的理论和实证背景下讨论我们的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A data-driven validation of frontal EEG asymmetry using a consumer device
Affective computing requires a reliable method to obtain real time information regarding affective state, and one of the promising avenues is via electroencephalography (EEG). We have performed a study intended to test whether a low cost EEG device targeted at consumers can be used to measure extreme emotional valence. One of the most studied frameworks related to the way affect is reflected in EEG is based on frontal hemispheric asymmetry. Our results indicate that a simple replication of the methods derived from this hypothesis might not be sufficient. However, using a data-driven approach based on feature engineering and machine learning, we describe a method that can reliably measure valence with the EPOC device. We discuss our study in the context of the theoretical and empirical background for frontal asymmetry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信