{"title":"velezensis芽孢杆菌PHP1601对铜绿蝇幼虫具有杀虫活性的脂肽生物表面活性剂的鉴定","authors":"D. R. Ramesar, C. Hunter","doi":"10.1080/09583157.2023.2231180","DOIUrl":null,"url":null,"abstract":"ABSTRACT Lipopeptide biosurfactant compounds derived from cultures of Bacillus velezensis PHP1601 (Bacillales: Bacillaceae) show antagonism towards the larval stage of Lucilia cuprina (Diptera: Calliphoridae), a blowfly pest of agricultural significance. A study was undertaken to characterise and elucidate the lipopeptide biosurfactant compounds contributing to this effect. Lipopeptide extracts were obtained from cultures grown in Landy medium by acid precipitation and methanol extraction. Thin layer chromatography and UPLC ESI-TOF MS were used to partially purify and characterise the lipopeptides present in the extract. Lipopeptide fractions contained homologues of surfactin (C13–C17), fengycin (C14–C17) and iturin (C14–C17). Each lipopeptide fraction (20 µg g−1) displayed larvicidal activity against second-instar L. cuprina larvae, with a highly polar surfactin fraction (Rf: 0.90) being the most effective. The potency of surfactin was confirmed with bioassays incorporating a surfactin standard whereby a LT50 of 179.97 h and LC50 of 9.87 µg g−1 was determined. Interestingly, larvae cadavers recovered from the bioassays displayed significant physiological discolouration and stunting; this was attributed to the biosurfactant nature of the lipopeptide compounds. These findings corroborate the role of lipopeptide compounds, specifically surfactin, in the fly biocontrol mechanism of PHP1601 and constitute the first report of these compounds being insecticidal towards blowfly larvae.","PeriodicalId":8820,"journal":{"name":"Biocontrol Science and Technology","volume":"4 1","pages":"772 - 787"},"PeriodicalIF":1.5000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Elucidation of lipopeptide biosurfactants responsible for the larvicidal activity of Bacillus velezensis PHP1601 towards Lucilia cuprina larvae\",\"authors\":\"D. R. Ramesar, C. Hunter\",\"doi\":\"10.1080/09583157.2023.2231180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Lipopeptide biosurfactant compounds derived from cultures of Bacillus velezensis PHP1601 (Bacillales: Bacillaceae) show antagonism towards the larval stage of Lucilia cuprina (Diptera: Calliphoridae), a blowfly pest of agricultural significance. A study was undertaken to characterise and elucidate the lipopeptide biosurfactant compounds contributing to this effect. Lipopeptide extracts were obtained from cultures grown in Landy medium by acid precipitation and methanol extraction. Thin layer chromatography and UPLC ESI-TOF MS were used to partially purify and characterise the lipopeptides present in the extract. Lipopeptide fractions contained homologues of surfactin (C13–C17), fengycin (C14–C17) and iturin (C14–C17). Each lipopeptide fraction (20 µg g−1) displayed larvicidal activity against second-instar L. cuprina larvae, with a highly polar surfactin fraction (Rf: 0.90) being the most effective. The potency of surfactin was confirmed with bioassays incorporating a surfactin standard whereby a LT50 of 179.97 h and LC50 of 9.87 µg g−1 was determined. Interestingly, larvae cadavers recovered from the bioassays displayed significant physiological discolouration and stunting; this was attributed to the biosurfactant nature of the lipopeptide compounds. These findings corroborate the role of lipopeptide compounds, specifically surfactin, in the fly biocontrol mechanism of PHP1601 and constitute the first report of these compounds being insecticidal towards blowfly larvae.\",\"PeriodicalId\":8820,\"journal\":{\"name\":\"Biocontrol Science and Technology\",\"volume\":\"4 1\",\"pages\":\"772 - 787\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biocontrol Science and Technology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/09583157.2023.2231180\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocontrol Science and Technology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/09583157.2023.2231180","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Elucidation of lipopeptide biosurfactants responsible for the larvicidal activity of Bacillus velezensis PHP1601 towards Lucilia cuprina larvae
ABSTRACT Lipopeptide biosurfactant compounds derived from cultures of Bacillus velezensis PHP1601 (Bacillales: Bacillaceae) show antagonism towards the larval stage of Lucilia cuprina (Diptera: Calliphoridae), a blowfly pest of agricultural significance. A study was undertaken to characterise and elucidate the lipopeptide biosurfactant compounds contributing to this effect. Lipopeptide extracts were obtained from cultures grown in Landy medium by acid precipitation and methanol extraction. Thin layer chromatography and UPLC ESI-TOF MS were used to partially purify and characterise the lipopeptides present in the extract. Lipopeptide fractions contained homologues of surfactin (C13–C17), fengycin (C14–C17) and iturin (C14–C17). Each lipopeptide fraction (20 µg g−1) displayed larvicidal activity against second-instar L. cuprina larvae, with a highly polar surfactin fraction (Rf: 0.90) being the most effective. The potency of surfactin was confirmed with bioassays incorporating a surfactin standard whereby a LT50 of 179.97 h and LC50 of 9.87 µg g−1 was determined. Interestingly, larvae cadavers recovered from the bioassays displayed significant physiological discolouration and stunting; this was attributed to the biosurfactant nature of the lipopeptide compounds. These findings corroborate the role of lipopeptide compounds, specifically surfactin, in the fly biocontrol mechanism of PHP1601 and constitute the first report of these compounds being insecticidal towards blowfly larvae.
期刊介绍:
Biocontrol Science and Technology presents original research and reviews in the fields of biological pest, disease and weed control. The journal covers the following areas:
Animal pest control by natural enemies
Biocontrol of plant diseases
Weed biocontrol
''Classical'' biocontrol
Augmentative releases of natural enemies
Quality control of beneficial organisms
Microbial pesticides
Properties of biocontrol agents, modes of actions and methods of application
Physiology and behaviour of biocontrol agents and their interaction with hosts
Pest and natural enemy dynamics, and simulation modelling
Genetic improvement of natural enemies including genetic manipulation
Natural enemy production, formulation, distribution and release methods
Environmental impact studies
Releases of selected and/or genetically manipulated organisms
Safety testing
The role of biocontrol methods in integrated crop protection
Conservation and enhancement of natural enemy populations
Effects of pesticides on biocontrol organisms
Biocontrol legislation and policy, registration and commercialization.