量子信息复杂度

D. Touchette
{"title":"量子信息复杂度","authors":"D. Touchette","doi":"10.1145/2746539.2746613","DOIUrl":null,"url":null,"abstract":"We define a new notion of information cost for quantum protocols, and a corresponding notion of quantum information complexity for bipartite quantum tasks. These are the fully quantum generalizations of the analogous quantities for bipartite classical tasks that have found many applications recently, in particular for proving communication complexity lower bounds and direct sum theorems. Finding such a quantum generalization of information complexity was one of the open problems recently raised by Braverman (STOC'12). Previous attempts have been made to define such a quantity for quantum protocols, with particular applications in mind; our notion differs from these in many respects. First, it directly provides a lower bound on the quantum communication cost, independent of the number of rounds of the underlying protocol. Secondly, we provide an operational interpretation for quantum information complexity: we show that it is exactly equal to the amortized quantum communication complexity of a bipartite task on a given input. This generalizes a result of Braverman and Rao (FOCS'11) to quantum protocols. Along the way to prove this result, we even strengthens the classical result in a bounded round scenario, and also prove important structural properties of quantum information cost and complexity. We prove that using this definition leads to the first general direct sum theorem for bounded round quantum communication complexity. Previous direct sum results in quantum communication complexity either held for some particular classes of functions, or were general but only held for single-round protocols. We also discuss potential applications of the new quantities to obtain lower bounds on quantum communication complexity.","PeriodicalId":20566,"journal":{"name":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"Quantum Information Complexity\",\"authors\":\"D. Touchette\",\"doi\":\"10.1145/2746539.2746613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define a new notion of information cost for quantum protocols, and a corresponding notion of quantum information complexity for bipartite quantum tasks. These are the fully quantum generalizations of the analogous quantities for bipartite classical tasks that have found many applications recently, in particular for proving communication complexity lower bounds and direct sum theorems. Finding such a quantum generalization of information complexity was one of the open problems recently raised by Braverman (STOC'12). Previous attempts have been made to define such a quantity for quantum protocols, with particular applications in mind; our notion differs from these in many respects. First, it directly provides a lower bound on the quantum communication cost, independent of the number of rounds of the underlying protocol. Secondly, we provide an operational interpretation for quantum information complexity: we show that it is exactly equal to the amortized quantum communication complexity of a bipartite task on a given input. This generalizes a result of Braverman and Rao (FOCS'11) to quantum protocols. Along the way to prove this result, we even strengthens the classical result in a bounded round scenario, and also prove important structural properties of quantum information cost and complexity. We prove that using this definition leads to the first general direct sum theorem for bounded round quantum communication complexity. Previous direct sum results in quantum communication complexity either held for some particular classes of functions, or were general but only held for single-round protocols. We also discuss potential applications of the new quantities to obtain lower bounds on quantum communication complexity.\",\"PeriodicalId\":20566,\"journal\":{\"name\":\"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2746539.2746613\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2746539.2746613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

摘要

我们为量子协议定义了一个新的信息成本概念,并为二部量子任务定义了相应的量子信息复杂度概念。这些是二部经典任务的类似量的全量子推广,最近已经发现了许多应用,特别是在证明通信复杂性下界和直接和定理方面。找到这种信息复杂性的量子泛化是布雷弗曼(STOC'12)最近提出的开放问题之一。以前的尝试已经为量子协议定义了这样一个量,并考虑了特定的应用;我们的观念在许多方面与这些观念不同。首先,它直接提供了量子通信成本的下界,与底层协议的轮数无关。其次,我们提供了量子信息复杂性的操作解释:我们证明它正好等于给定输入上的二部任务的平摊量子通信复杂性。这将Braverman和Rao (FOCS'11)的结果推广到量子协议。在证明这一结果的过程中,我们甚至在一个有界的圆场景中加强了经典的结果,也证明了量子信息成本和复杂性的重要结构性质。我们证明了利用这个定义可以导出有界圆量子通信复杂度的第一个一般直接和定理。之前的直接和导致的量子通信复杂性要么适用于某些特定的函数类,要么是通用的,但只适用于单轮协议。我们还讨论了新量的潜在应用,以获得量子通信复杂性的下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum Information Complexity
We define a new notion of information cost for quantum protocols, and a corresponding notion of quantum information complexity for bipartite quantum tasks. These are the fully quantum generalizations of the analogous quantities for bipartite classical tasks that have found many applications recently, in particular for proving communication complexity lower bounds and direct sum theorems. Finding such a quantum generalization of information complexity was one of the open problems recently raised by Braverman (STOC'12). Previous attempts have been made to define such a quantity for quantum protocols, with particular applications in mind; our notion differs from these in many respects. First, it directly provides a lower bound on the quantum communication cost, independent of the number of rounds of the underlying protocol. Secondly, we provide an operational interpretation for quantum information complexity: we show that it is exactly equal to the amortized quantum communication complexity of a bipartite task on a given input. This generalizes a result of Braverman and Rao (FOCS'11) to quantum protocols. Along the way to prove this result, we even strengthens the classical result in a bounded round scenario, and also prove important structural properties of quantum information cost and complexity. We prove that using this definition leads to the first general direct sum theorem for bounded round quantum communication complexity. Previous direct sum results in quantum communication complexity either held for some particular classes of functions, or were general but only held for single-round protocols. We also discuss potential applications of the new quantities to obtain lower bounds on quantum communication complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信