J. Wu, E. Rosenbaum, B. MacDonald, E. Li, J. Tao, B. Tracy, P. Fang
{"title":"阳极孔注入与氢释放:栅氧化物击穿的机理","authors":"J. Wu, E. Rosenbaum, B. MacDonald, E. Li, J. Tao, B. Tracy, P. Fang","doi":"10.1109/RELPHY.2000.843887","DOIUrl":null,"url":null,"abstract":"Recent studies have shown that post-metallization anneal in deuterium can improve transistor lifetime by one order of magnitude or more. In this paper, we show that the gate oxide reliability of devices annealed in deuterium is similar to that of devices annealed in hydrogen. This finding suggests that a model for gate oxide breakdown which involves release of interfacial hydrogen may not be accurate.","PeriodicalId":6387,"journal":{"name":"2000 IEEE International Reliability Physics Symposium Proceedings. 38th Annual (Cat. No.00CH37059)","volume":"222 1","pages":"27-32"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Anode hole injection versus hydrogen release: the mechanism for gate oxide breakdown\",\"authors\":\"J. Wu, E. Rosenbaum, B. MacDonald, E. Li, J. Tao, B. Tracy, P. Fang\",\"doi\":\"10.1109/RELPHY.2000.843887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent studies have shown that post-metallization anneal in deuterium can improve transistor lifetime by one order of magnitude or more. In this paper, we show that the gate oxide reliability of devices annealed in deuterium is similar to that of devices annealed in hydrogen. This finding suggests that a model for gate oxide breakdown which involves release of interfacial hydrogen may not be accurate.\",\"PeriodicalId\":6387,\"journal\":{\"name\":\"2000 IEEE International Reliability Physics Symposium Proceedings. 38th Annual (Cat. No.00CH37059)\",\"volume\":\"222 1\",\"pages\":\"27-32\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2000 IEEE International Reliability Physics Symposium Proceedings. 38th Annual (Cat. No.00CH37059)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RELPHY.2000.843887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Reliability Physics Symposium Proceedings. 38th Annual (Cat. No.00CH37059)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RELPHY.2000.843887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Anode hole injection versus hydrogen release: the mechanism for gate oxide breakdown
Recent studies have shown that post-metallization anneal in deuterium can improve transistor lifetime by one order of magnitude or more. In this paper, we show that the gate oxide reliability of devices annealed in deuterium is similar to that of devices annealed in hydrogen. This finding suggests that a model for gate oxide breakdown which involves release of interfacial hydrogen may not be accurate.