CommunityCommands:软件应用程序的命令建议

Justin Matejka, Wei Li, Tovi Grossman, G. Fitzmaurice
{"title":"CommunityCommands:软件应用程序的命令建议","authors":"Justin Matejka, Wei Li, Tovi Grossman, G. Fitzmaurice","doi":"10.1145/1622176.1622214","DOIUrl":null,"url":null,"abstract":"We explore the use of modern recommender system technology to address the problem of learning software applications. Before describing our new command recommender system, we first define relevant design considerations. We then discuss a 3 month user study we conducted with professional users to evaluate our algorithms which generated customized recommendations for each user. Analysis shows that our item-based collaborative filtering algorithm generates 2.1 times as many good suggestions as existing techniques. In addition we present a prototype user interface to ambiently present command recommendations to users, which has received promising initial user feedback.","PeriodicalId":93361,"journal":{"name":"Proceedings of the ACM Symposium on User Interface Software and Technology. ACM Symposium on User Interface Software and Technology","volume":"112 1","pages":"193-202"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"138","resultStr":"{\"title\":\"CommunityCommands: command recommendations for software applications\",\"authors\":\"Justin Matejka, Wei Li, Tovi Grossman, G. Fitzmaurice\",\"doi\":\"10.1145/1622176.1622214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explore the use of modern recommender system technology to address the problem of learning software applications. Before describing our new command recommender system, we first define relevant design considerations. We then discuss a 3 month user study we conducted with professional users to evaluate our algorithms which generated customized recommendations for each user. Analysis shows that our item-based collaborative filtering algorithm generates 2.1 times as many good suggestions as existing techniques. In addition we present a prototype user interface to ambiently present command recommendations to users, which has received promising initial user feedback.\",\"PeriodicalId\":93361,\"journal\":{\"name\":\"Proceedings of the ACM Symposium on User Interface Software and Technology. ACM Symposium on User Interface Software and Technology\",\"volume\":\"112 1\",\"pages\":\"193-202\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"138\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM Symposium on User Interface Software and Technology. ACM Symposium on User Interface Software and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1622176.1622214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Symposium on User Interface Software and Technology. ACM Symposium on User Interface Software and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1622176.1622214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 138

摘要

我们探索使用现代推荐系统技术来解决学习软件应用的问题。在描述我们的新命令推荐系统之前,我们首先定义相关的设计考虑。然后,我们讨论了我们与专业用户进行的为期3个月的用户研究,以评估我们为每个用户生成定制推荐的算法。分析表明,我们的基于项目的协同过滤算法产生的好建议是现有技术的2.1倍。此外,我们还提供了一个原型用户界面,以环境地向用户提供命令建议,该界面收到了良好的初始用户反馈。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CommunityCommands: command recommendations for software applications
We explore the use of modern recommender system technology to address the problem of learning software applications. Before describing our new command recommender system, we first define relevant design considerations. We then discuss a 3 month user study we conducted with professional users to evaluate our algorithms which generated customized recommendations for each user. Analysis shows that our item-based collaborative filtering algorithm generates 2.1 times as many good suggestions as existing techniques. In addition we present a prototype user interface to ambiently present command recommendations to users, which has received promising initial user feedback.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信