{"title":"基于傅里叶优化的对相关猜想的q-模拟","authors":"Oscar E. Quesada-Herrera","doi":"10.1090/mcom/3747","DOIUrl":null,"url":null,"abstract":"We study the $q$-analogue of the average of Montgomery's function $F(\\alpha, T)$ over bounded intervals. Assuming the Generalized Riemann Hypothesis for Dirichlet $L$-functions, we obtain upper and lower bounds for this average over an interval that are quite close to the pointwise conjectured value of 1. To compute our bounds, we extend a Fourier analysis approach by Carneiro, Chandee, Chirre, and Milinovich, and apply computational methods of non-smooth programming.","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":"5 1","pages":"2347-2365"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the q-analogue of the Pair Correlation Conjecture via Fourier optimization\",\"authors\":\"Oscar E. Quesada-Herrera\",\"doi\":\"10.1090/mcom/3747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the $q$-analogue of the average of Montgomery's function $F(\\\\alpha, T)$ over bounded intervals. Assuming the Generalized Riemann Hypothesis for Dirichlet $L$-functions, we obtain upper and lower bounds for this average over an interval that are quite close to the pointwise conjectured value of 1. To compute our bounds, we extend a Fourier analysis approach by Carneiro, Chandee, Chirre, and Milinovich, and apply computational methods of non-smooth programming.\",\"PeriodicalId\":18301,\"journal\":{\"name\":\"Math. Comput. Model.\",\"volume\":\"5 1\",\"pages\":\"2347-2365\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Math. Comput. Model.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3747\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Math. Comput. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the q-analogue of the Pair Correlation Conjecture via Fourier optimization
We study the $q$-analogue of the average of Montgomery's function $F(\alpha, T)$ over bounded intervals. Assuming the Generalized Riemann Hypothesis for Dirichlet $L$-functions, we obtain upper and lower bounds for this average over an interval that are quite close to the pointwise conjectured value of 1. To compute our bounds, we extend a Fourier analysis approach by Carneiro, Chandee, Chirre, and Milinovich, and apply computational methods of non-smooth programming.