切片的生命:猪肾片测试抗纤维化药物在移植设置

Q4 Medicine
L. V. van Leeuwen, M. Ruigrok, H. Leuvenink, P. Olinga
{"title":"切片的生命:猪肾片测试抗纤维化药物在移植设置","authors":"L. V. van Leeuwen, M. Ruigrok, H. Leuvenink, P. Olinga","doi":"10.3390/transplantology4020007","DOIUrl":null,"url":null,"abstract":"Circulatory death donor (DCD) kidneys are increasingly used to enlarge the donor pool. These kidneys undergo ischemia-reperfusion injury, frequently leading to renal fibrosis. Transforming growth factor beta 1 (TGF-β1) and matrix metalloproteases have been identified as central mediators of fibrosis and inhibition of these targets could attenuate fibrosis. We studied whether galunisertib, doxycycline, taurine, and febuxostat alleviated fibrosis in precision-cut kidney slices (PCKS). PCKS were prepared from porcine kidneys that were exposed to 30 min of warm ischemia followed by 3 h of oxygenated hypothermic machine perfusion. We subsequently incubated PCKS for 48 h at 37 °C with the described compounds. To further elucidate the antifibrotic effects of galunisertib, we cultured PCKS with TGF-β1. We first screened the effects of the compounds without TGF-β1. Most significant effects were observed for galunisertib which lowered the expression of ACTA2, TGFB1, FN2, and SERPINE1. We then investigated the effects of galunisertib in fibrotic PCKS incubated with TGF-β1. TGF-β1 significantly increased expression of TGFB1, FN1, SERPINE1, and SERPINH1. Galunisertib, however, attenuated the expression of all fibrosis-related genes. Galunisertib appears to be a promising antifibrotic compound requiring further research in a preclinical model and may ultimately be administered during machine perfusion as an antifibrotic treatment in a transplant setting.","PeriodicalId":36461,"journal":{"name":"Cell and Organ Transplantology","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Slice of Life: Porcine Kidney Slices for Testing Antifibrotic Drugs in a Transplant Setting\",\"authors\":\"L. V. van Leeuwen, M. Ruigrok, H. Leuvenink, P. Olinga\",\"doi\":\"10.3390/transplantology4020007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Circulatory death donor (DCD) kidneys are increasingly used to enlarge the donor pool. These kidneys undergo ischemia-reperfusion injury, frequently leading to renal fibrosis. Transforming growth factor beta 1 (TGF-β1) and matrix metalloproteases have been identified as central mediators of fibrosis and inhibition of these targets could attenuate fibrosis. We studied whether galunisertib, doxycycline, taurine, and febuxostat alleviated fibrosis in precision-cut kidney slices (PCKS). PCKS were prepared from porcine kidneys that were exposed to 30 min of warm ischemia followed by 3 h of oxygenated hypothermic machine perfusion. We subsequently incubated PCKS for 48 h at 37 °C with the described compounds. To further elucidate the antifibrotic effects of galunisertib, we cultured PCKS with TGF-β1. We first screened the effects of the compounds without TGF-β1. Most significant effects were observed for galunisertib which lowered the expression of ACTA2, TGFB1, FN2, and SERPINE1. We then investigated the effects of galunisertib in fibrotic PCKS incubated with TGF-β1. TGF-β1 significantly increased expression of TGFB1, FN1, SERPINE1, and SERPINH1. Galunisertib, however, attenuated the expression of all fibrosis-related genes. Galunisertib appears to be a promising antifibrotic compound requiring further research in a preclinical model and may ultimately be administered during machine perfusion as an antifibrotic treatment in a transplant setting.\",\"PeriodicalId\":36461,\"journal\":{\"name\":\"Cell and Organ Transplantology\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell and Organ Transplantology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/transplantology4020007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell and Organ Transplantology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/transplantology4020007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

循环死亡供肾(DCD)越来越多地用于扩大供体池。这些肾脏遭受缺血再灌注损伤,经常导致肾纤维化。转化生长因子β1 (TGF-β1)和基质金属蛋白酶已被确定为纤维化的中心介质,抑制这些靶点可减轻纤维化。我们研究了galunisertib、多西环素、牛磺酸和非布司他是否减轻了精确切割肾片(PCKS)的纤维化。猪肾经热缺血30分钟后,再经缺氧机灌注3小时,制备PCKS。随后,我们将PCKS与所述化合物在37℃下孵育48小时。为了进一步阐明galunisertib的抗纤维化作用,我们用TGF-β1培养PCKS。我们首先筛选不含TGF-β1的化合物的作用。galunisertib降低ACTA2、TGFB1、FN2和SERPINE1的表达效果最为显著。然后,我们研究了galunisertib对TGF-β1培养的纤维化PCKS的影响。TGF-β1显著提高TGFB1、FN1、SERPINE1、SERPINH1的表达。然而,Galunisertib能减弱所有纤维化相关基因的表达。Galunisertib似乎是一种有前景的抗纤维化化合物,需要在临床前模型中进一步研究,最终可能在移植环境中作为抗纤维化治疗在机器灌注过程中给予。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Slice of Life: Porcine Kidney Slices for Testing Antifibrotic Drugs in a Transplant Setting
Circulatory death donor (DCD) kidneys are increasingly used to enlarge the donor pool. These kidneys undergo ischemia-reperfusion injury, frequently leading to renal fibrosis. Transforming growth factor beta 1 (TGF-β1) and matrix metalloproteases have been identified as central mediators of fibrosis and inhibition of these targets could attenuate fibrosis. We studied whether galunisertib, doxycycline, taurine, and febuxostat alleviated fibrosis in precision-cut kidney slices (PCKS). PCKS were prepared from porcine kidneys that were exposed to 30 min of warm ischemia followed by 3 h of oxygenated hypothermic machine perfusion. We subsequently incubated PCKS for 48 h at 37 °C with the described compounds. To further elucidate the antifibrotic effects of galunisertib, we cultured PCKS with TGF-β1. We first screened the effects of the compounds without TGF-β1. Most significant effects were observed for galunisertib which lowered the expression of ACTA2, TGFB1, FN2, and SERPINE1. We then investigated the effects of galunisertib in fibrotic PCKS incubated with TGF-β1. TGF-β1 significantly increased expression of TGFB1, FN1, SERPINE1, and SERPINH1. Galunisertib, however, attenuated the expression of all fibrosis-related genes. Galunisertib appears to be a promising antifibrotic compound requiring further research in a preclinical model and may ultimately be administered during machine perfusion as an antifibrotic treatment in a transplant setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell and Organ Transplantology
Cell and Organ Transplantology Medicine-Transplantation
CiteScore
0.40
自引率
0.00%
发文量
8
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信