{"title":"酉群Un(2)的基本3-转置","authors":"J. Moori","doi":"10.1142/s1005386723000044","DOIUrl":null,"url":null,"abstract":"We aim to study maximal pairwise commuting sets of 3-transpositions (transvections) of the simple unitary group [Formula: see text] over [Formula: see text], and to construct designs from these sets. Any maximal set of pairwise commuting 3-transpositions is called a basic set of transpositions. Let [Formula: see text]. It is well known that [Formula: see text] is a 3-transposition group with the set [Formula: see text], the conjugacy class consisting of its transvections, as the set of 3-transpositions. Let [Formula: see text] be a set of basic transpositions in [Formula: see text]. We give general descriptions of [Formula: see text] and [Formula: see text]- [Formula: see text] designs [Formula: see text], with [Formula: see text] and [Formula: see text]. The parameters [Formula: see text], [Formula: see text] and further properties of [Formula: see text] are determined. We also, as examples, apply the method to the unitary simple groups [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text].","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Basic 3-Transpositions of Unitary Group Un (2 )\",\"authors\":\"J. Moori\",\"doi\":\"10.1142/s1005386723000044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We aim to study maximal pairwise commuting sets of 3-transpositions (transvections) of the simple unitary group [Formula: see text] over [Formula: see text], and to construct designs from these sets. Any maximal set of pairwise commuting 3-transpositions is called a basic set of transpositions. Let [Formula: see text]. It is well known that [Formula: see text] is a 3-transposition group with the set [Formula: see text], the conjugacy class consisting of its transvections, as the set of 3-transpositions. Let [Formula: see text] be a set of basic transpositions in [Formula: see text]. We give general descriptions of [Formula: see text] and [Formula: see text]- [Formula: see text] designs [Formula: see text], with [Formula: see text] and [Formula: see text]. The parameters [Formula: see text], [Formula: see text] and further properties of [Formula: see text] are determined. We also, as examples, apply the method to the unitary simple groups [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text].\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1005386723000044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386723000044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We aim to study maximal pairwise commuting sets of 3-transpositions (transvections) of the simple unitary group [Formula: see text] over [Formula: see text], and to construct designs from these sets. Any maximal set of pairwise commuting 3-transpositions is called a basic set of transpositions. Let [Formula: see text]. It is well known that [Formula: see text] is a 3-transposition group with the set [Formula: see text], the conjugacy class consisting of its transvections, as the set of 3-transpositions. Let [Formula: see text] be a set of basic transpositions in [Formula: see text]. We give general descriptions of [Formula: see text] and [Formula: see text]- [Formula: see text] designs [Formula: see text], with [Formula: see text] and [Formula: see text]. The parameters [Formula: see text], [Formula: see text] and further properties of [Formula: see text] are determined. We also, as examples, apply the method to the unitary simple groups [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text].