基于混沌和小波神经网络的大型复杂机械异常振动智能建模

Zhonghui Luo
{"title":"基于混沌和小波神经网络的大型复杂机械异常振动智能建模","authors":"Zhonghui Luo","doi":"10.1109/ICNC.2008.715","DOIUrl":null,"url":null,"abstract":"This paper analyses the chaotic characteristics of a large temper rolling millpsilas abnormal vibration signals, and studies phase space reconstruction techniques of the signals. Then, combining the theory of chaotic dynamics and wavelet neural networks, a new vibration model is set up, through inversion method. The property of the model is tested and compared with the model of backpropagation(BP) neural networks, respectively. The result shows that the wavelet neural networks have an advantage over the backpropagation neural networks in rapid convergence and high accuracy.","PeriodicalId":6404,"journal":{"name":"2008 Fourth International Conference on Natural Computation","volume":"77 1","pages":"439-442"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent Modeling of Abnormal Vibration for Large-Complex Machine Based on Chaos and Wavelet Neural Networks\",\"authors\":\"Zhonghui Luo\",\"doi\":\"10.1109/ICNC.2008.715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper analyses the chaotic characteristics of a large temper rolling millpsilas abnormal vibration signals, and studies phase space reconstruction techniques of the signals. Then, combining the theory of chaotic dynamics and wavelet neural networks, a new vibration model is set up, through inversion method. The property of the model is tested and compared with the model of backpropagation(BP) neural networks, respectively. The result shows that the wavelet neural networks have an advantage over the backpropagation neural networks in rapid convergence and high accuracy.\",\"PeriodicalId\":6404,\"journal\":{\"name\":\"2008 Fourth International Conference on Natural Computation\",\"volume\":\"77 1\",\"pages\":\"439-442\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Fourth International Conference on Natural Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2008.715\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Fourth International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2008.715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分析了某大型回火轧机异常振动信号的混沌特性,研究了异常振动信号的相空间重构技术。然后,结合混沌动力学理论和小波神经网络,通过反演方法建立了新的振动模型。对该模型的性能进行了测试,并与BP神经网络模型进行了比较。结果表明,与反向传播神经网络相比,小波神经网络具有收敛速度快、精度高等优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent Modeling of Abnormal Vibration for Large-Complex Machine Based on Chaos and Wavelet Neural Networks
This paper analyses the chaotic characteristics of a large temper rolling millpsilas abnormal vibration signals, and studies phase space reconstruction techniques of the signals. Then, combining the theory of chaotic dynamics and wavelet neural networks, a new vibration model is set up, through inversion method. The property of the model is tested and compared with the model of backpropagation(BP) neural networks, respectively. The result shows that the wavelet neural networks have an advantage over the backpropagation neural networks in rapid convergence and high accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信