散列成黑森曲线

Q2 Mathematics
R. R. Farashahi
{"title":"散列成黑森曲线","authors":"R. R. Farashahi","doi":"10.1504/IJACT.2014.062737","DOIUrl":null,"url":null,"abstract":"We propose an encoding function from the elements of the finite field Fq into points on a Hessian curve. Next, we present an injective encoding function from the set of all positive integers less than or equal to l into points on a Hessian curve over Fq with odd q and l = (q - 1)/2. We also present an injective encoding function from the bit strings of length k 􀀀 1 into points on a Hessian curve over the binary finite field F2k.","PeriodicalId":53552,"journal":{"name":"International Journal of Applied Cryptography","volume":"30 1","pages":"278-289"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Hashing into Hessian curves\",\"authors\":\"R. R. Farashahi\",\"doi\":\"10.1504/IJACT.2014.062737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an encoding function from the elements of the finite field Fq into points on a Hessian curve. Next, we present an injective encoding function from the set of all positive integers less than or equal to l into points on a Hessian curve over Fq with odd q and l = (q - 1)/2. We also present an injective encoding function from the bit strings of length k 􀀀 1 into points on a Hessian curve over the binary finite field F2k.\",\"PeriodicalId\":53552,\"journal\":{\"name\":\"International Journal of Applied Cryptography\",\"volume\":\"30 1\",\"pages\":\"278-289\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Cryptography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJACT.2014.062737\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Cryptography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJACT.2014.062737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 36

摘要

我们提出了一个编码函数,将有限域Fq的元素转换为Hessian曲线上的点。其次,我们给出了一个内射编码函数,它是由小于等于l的所有正整数组成的集合,在Fq上的Hessian曲线上有奇数q和l = (q - 1)/2的点。我们还提出了一个从长度为k􀀀1的位串到二进制有限域F2k上的Hessian曲线上的点的内射编码函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hashing into Hessian curves
We propose an encoding function from the elements of the finite field Fq into points on a Hessian curve. Next, we present an injective encoding function from the set of all positive integers less than or equal to l into points on a Hessian curve over Fq with odd q and l = (q - 1)/2. We also present an injective encoding function from the bit strings of length k 􀀀 1 into points on a Hessian curve over the binary finite field F2k.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Applied Cryptography
International Journal of Applied Cryptography Mathematics-Applied Mathematics
CiteScore
2.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信