信道间的量子瓦瑟斯坦距离为1阶

Pub Date : 2022-10-07 DOI:10.1142/s0219025723500066
Rocco Duvenhage, Mathumo Mapaya
{"title":"信道间的量子瓦瑟斯坦距离为1阶","authors":"Rocco Duvenhage, Mathumo Mapaya","doi":"10.1142/s0219025723500066","DOIUrl":null,"url":null,"abstract":"We set up a general theory for a quantum Wasserstein distance of order 1 in an operator algebraic framework, extending recent work in finite dimensions. In addition, this theory applies not only to states, but also to channels, giving a metric on the set of channels from one composite system to another. The additivity and stability properties of this metric are studied.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Quantum Wasserstein distance of order 1 between channels\",\"authors\":\"Rocco Duvenhage, Mathumo Mapaya\",\"doi\":\"10.1142/s0219025723500066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We set up a general theory for a quantum Wasserstein distance of order 1 in an operator algebraic framework, extending recent work in finite dimensions. In addition, this theory applies not only to states, but also to channels, giving a metric on the set of channels from one composite system to another. The additivity and stability properties of this metric are studied.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219025723500066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219025723500066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们在算子代数框架中建立了1阶量子沃瑟斯坦距离的一般理论,扩展了最近在有限维上的工作。此外,该理论不仅适用于状态,也适用于通道,给出了从一个复合系统到另一个复合系统的通道集的度量。研究了该度量的可加性和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Quantum Wasserstein distance of order 1 between channels
We set up a general theory for a quantum Wasserstein distance of order 1 in an operator algebraic framework, extending recent work in finite dimensions. In addition, this theory applies not only to states, but also to channels, giving a metric on the set of channels from one composite system to another. The additivity and stability properties of this metric are studied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信