界面热效应下非线性结构声模型的边界稳定性

Irena Lasiecka, Catherine Lebiedzik
{"title":"界面热效应下非线性结构声模型的边界稳定性","authors":"Irena Lasiecka,&nbsp;Catherine Lebiedzik","doi":"10.1016/S1287-4620(00)00111-3","DOIUrl":null,"url":null,"abstract":"<div><p>A three-dimensional structural acoustic model is considered. This model consists of a wave equation defined on a 3-dimensional bounded domain <span><math><mtext>Ω</mtext></math></span> coupled with a thermoelastic plate equation defined on <em>Γ</em><sub>0</sub> – a flat surface of the boundary <span><math><mtext>∂Ω</mtext></math></span>. The main issue studied here is that of <em>uniform stabilizability</em> of the overall interactive model. Since the original (uncontrolled) model is only <em>strongly stable</em>, but not <em>uniformly stable</em>, the question becomes: what is the `minimal amount' of dissipation necessary to obtain uniform decay rates for the energy of the overall system? Our main result states that boundary <em>nonlinear</em> dissipation placed only on a suitable <em>portion</em> of the part of the boundary which is complementary to <em>Γ</em><sub>0</sub>, suffices for the stabilization of the entire structure.</p></div>","PeriodicalId":100303,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy","volume":"328 2","pages":"Pages 187-192"},"PeriodicalIF":0.0000,"publicationDate":"2000-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1287-4620(00)00111-3","citationCount":"7","resultStr":"{\"title\":\"Boundary stabilizability of nonlinear structural acoustic models with thermal effects on the interface\",\"authors\":\"Irena Lasiecka,&nbsp;Catherine Lebiedzik\",\"doi\":\"10.1016/S1287-4620(00)00111-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A three-dimensional structural acoustic model is considered. This model consists of a wave equation defined on a 3-dimensional bounded domain <span><math><mtext>Ω</mtext></math></span> coupled with a thermoelastic plate equation defined on <em>Γ</em><sub>0</sub> – a flat surface of the boundary <span><math><mtext>∂Ω</mtext></math></span>. The main issue studied here is that of <em>uniform stabilizability</em> of the overall interactive model. Since the original (uncontrolled) model is only <em>strongly stable</em>, but not <em>uniformly stable</em>, the question becomes: what is the `minimal amount' of dissipation necessary to obtain uniform decay rates for the energy of the overall system? Our main result states that boundary <em>nonlinear</em> dissipation placed only on a suitable <em>portion</em> of the part of the boundary which is complementary to <em>Γ</em><sub>0</sub>, suffices for the stabilization of the entire structure.</p></div>\",\"PeriodicalId\":100303,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy\",\"volume\":\"328 2\",\"pages\":\"Pages 187-192\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1287-4620(00)00111-3\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1287462000001113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1287462000001113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

考虑三维结构声学模型。该模型由定义在三维有界域Ω上的波动方程和定义在Γ0上的热弹性板方程组成-边界∂Ω的平面。本文研究的主要问题是整体交互模型的均匀稳定性问题。由于原始的(不受控制的)模型只有强稳定,而不是均匀稳定,问题就变成了:获得整个系统能量均匀衰减率所需的“最小耗散量”是多少?我们的主要结果表明,边界非线性耗散只放置在与Γ0互补的边界部分的适当部分上,就足以使整个结构稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boundary stabilizability of nonlinear structural acoustic models with thermal effects on the interface

A three-dimensional structural acoustic model is considered. This model consists of a wave equation defined on a 3-dimensional bounded domain Ω coupled with a thermoelastic plate equation defined on Γ0 – a flat surface of the boundary ∂Ω. The main issue studied here is that of uniform stabilizability of the overall interactive model. Since the original (uncontrolled) model is only strongly stable, but not uniformly stable, the question becomes: what is the `minimal amount' of dissipation necessary to obtain uniform decay rates for the energy of the overall system? Our main result states that boundary nonlinear dissipation placed only on a suitable portion of the part of the boundary which is complementary to Γ0, suffices for the stabilization of the entire structure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信