基于微动脉瘤的糖尿病视网膜病变筛查的视网膜眼底数据集验证

L. Giancardo, T. Karnowski, K. Tobin, F. Mériaudeau, E. Chaum
{"title":"基于微动脉瘤的糖尿病视网膜病变筛查的视网膜眼底数据集验证","authors":"L. Giancardo, T. Karnowski, K. Tobin, F. Mériaudeau, E. Chaum","doi":"10.1109/CBMS.2013.6627776","DOIUrl":null,"url":null,"abstract":"In recent years, automated retina image analysis (ARIA) algorithms have received increasing interest by the medical imaging analysis community. Particular attention has been given to techniques able to automate the pre-screening of Diabetic Retinopathy (DR) using inexpensive retina fundus cameras. With the growing number of diabetics worldwide, these techniques have the potential benefits of broad-based, inexpensive screening. The contribution of this paper is twofold: first, we propose a straightforward pipeline from microaneurysm (an early sign of DR) detection to automatic classification of DR without employing any additional features; then, we quantify the generalisation ability of the MA detection method by employing synthetic examples and, more importantly, we experiment with two public datasets which consist of more than 1,350 images graded as normal or showing signs of DR. With cross-datasets tests, we obtained results better or comparable to other recent methods. Since our experiments are performed only on publicly available datasets, our results are directly comparable with those of other research groups.","PeriodicalId":20519,"journal":{"name":"Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Validation of microaneurysm-based diabetic retinopathy screening across retina fundus datasets\",\"authors\":\"L. Giancardo, T. Karnowski, K. Tobin, F. Mériaudeau, E. Chaum\",\"doi\":\"10.1109/CBMS.2013.6627776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, automated retina image analysis (ARIA) algorithms have received increasing interest by the medical imaging analysis community. Particular attention has been given to techniques able to automate the pre-screening of Diabetic Retinopathy (DR) using inexpensive retina fundus cameras. With the growing number of diabetics worldwide, these techniques have the potential benefits of broad-based, inexpensive screening. The contribution of this paper is twofold: first, we propose a straightforward pipeline from microaneurysm (an early sign of DR) detection to automatic classification of DR without employing any additional features; then, we quantify the generalisation ability of the MA detection method by employing synthetic examples and, more importantly, we experiment with two public datasets which consist of more than 1,350 images graded as normal or showing signs of DR. With cross-datasets tests, we obtained results better or comparable to other recent methods. Since our experiments are performed only on publicly available datasets, our results are directly comparable with those of other research groups.\",\"PeriodicalId\":20519,\"journal\":{\"name\":\"Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2013.6627776\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2013.6627776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

近年来,自动视网膜图像分析(ARIA)算法受到了医学成像分析界越来越多的关注。特别关注的是能够使用廉价的视网膜眼底相机自动预筛查糖尿病视网膜病变(DR)的技术。随着世界范围内糖尿病患者数量的增加,这些技术具有广泛、廉价筛查的潜在好处。本文的贡献是双重的:首先,我们提出了一个简单的管道,从微动脉瘤(DR的早期征兆)检测到DR的自动分类,而不使用任何额外的特征;然后,我们通过使用合成示例来量化MA检测方法的泛化能力,更重要的是,我们用两个公共数据集进行了实验,这两个数据集由超过1,350张被分级为正常或显示dr迹象的图像组成。通过交叉数据集测试,我们获得了比其他最新方法更好或相当的结果。由于我们的实验只在公开可用的数据集上进行,我们的结果可以直接与其他研究小组的结果进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Validation of microaneurysm-based diabetic retinopathy screening across retina fundus datasets
In recent years, automated retina image analysis (ARIA) algorithms have received increasing interest by the medical imaging analysis community. Particular attention has been given to techniques able to automate the pre-screening of Diabetic Retinopathy (DR) using inexpensive retina fundus cameras. With the growing number of diabetics worldwide, these techniques have the potential benefits of broad-based, inexpensive screening. The contribution of this paper is twofold: first, we propose a straightforward pipeline from microaneurysm (an early sign of DR) detection to automatic classification of DR without employing any additional features; then, we quantify the generalisation ability of the MA detection method by employing synthetic examples and, more importantly, we experiment with two public datasets which consist of more than 1,350 images graded as normal or showing signs of DR. With cross-datasets tests, we obtained results better or comparable to other recent methods. Since our experiments are performed only on publicly available datasets, our results are directly comparable with those of other research groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信