H. Sawada, Yoshitaka Okada, Yuki Goto, Takayuki Fukui, T. Shibukawa, S. Kodama, Masashi Sugiya
{"title":"离子液体作为表面改性剂的应用:新型氟烷基端端乙烯三甲氧基硅烷低聚物-三正丁基-[(3-三甲氧基硅基)丙基]氯化磷二氧化硅纳米复合材料的超亲水性和疏油性切换行为","authors":"H. Sawada, Yoshitaka Okada, Yuki Goto, Takayuki Fukui, T. Shibukawa, S. Kodama, Masashi Sugiya","doi":"10.4011/SHIKIZAI.83.368","DOIUrl":null,"url":null,"abstract":"New fluoroalkyl end-capped vinyltrimethoxysilane oligomer - ionic liquid silica nanocomposites were prepared by sol-gel reaction of the corresponding oligomer in the presence of phosphorus-type ionic liquid: tri-n-butyl- [3- (trimethoxysilyl) propyl] phosphonium chloride under alkaline conditions. These fluorinated nanocomposites were found to apply to the surface modification of glass, and the modified glass surface exhibited a high oleophobicity imparted by fluoroalkyl groups in nanocomposites. Interestingly, this modified glass surface was found to show superhydrophilicity derived from hydrophilic cationic ionic liquid segments through the flip-flop motion between fluoroalkyl groups and the ionic liquid segments in nancomposites when the surface environment is changed from air to water.","PeriodicalId":21870,"journal":{"name":"Shikizai Kyokaishi","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Application of Ionic Liquid as Surface Modifier: Switching Behavior of Novel Fluoroalkyl End-capped Vinytrimethoxysilane Oligomer — Tri-n-butyl-[(3-trimethoxysilyl) propyl] phosphonium Chloride Silica Nanocomposites between Superhydrophilicity and Oleophobicity\",\"authors\":\"H. Sawada, Yoshitaka Okada, Yuki Goto, Takayuki Fukui, T. Shibukawa, S. Kodama, Masashi Sugiya\",\"doi\":\"10.4011/SHIKIZAI.83.368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"New fluoroalkyl end-capped vinyltrimethoxysilane oligomer - ionic liquid silica nanocomposites were prepared by sol-gel reaction of the corresponding oligomer in the presence of phosphorus-type ionic liquid: tri-n-butyl- [3- (trimethoxysilyl) propyl] phosphonium chloride under alkaline conditions. These fluorinated nanocomposites were found to apply to the surface modification of glass, and the modified glass surface exhibited a high oleophobicity imparted by fluoroalkyl groups in nanocomposites. Interestingly, this modified glass surface was found to show superhydrophilicity derived from hydrophilic cationic ionic liquid segments through the flip-flop motion between fluoroalkyl groups and the ionic liquid segments in nancomposites when the surface environment is changed from air to water.\",\"PeriodicalId\":21870,\"journal\":{\"name\":\"Shikizai Kyokaishi\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Shikizai Kyokaishi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4011/SHIKIZAI.83.368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shikizai Kyokaishi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4011/SHIKIZAI.83.368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application of Ionic Liquid as Surface Modifier: Switching Behavior of Novel Fluoroalkyl End-capped Vinytrimethoxysilane Oligomer — Tri-n-butyl-[(3-trimethoxysilyl) propyl] phosphonium Chloride Silica Nanocomposites between Superhydrophilicity and Oleophobicity
New fluoroalkyl end-capped vinyltrimethoxysilane oligomer - ionic liquid silica nanocomposites were prepared by sol-gel reaction of the corresponding oligomer in the presence of phosphorus-type ionic liquid: tri-n-butyl- [3- (trimethoxysilyl) propyl] phosphonium chloride under alkaline conditions. These fluorinated nanocomposites were found to apply to the surface modification of glass, and the modified glass surface exhibited a high oleophobicity imparted by fluoroalkyl groups in nanocomposites. Interestingly, this modified glass surface was found to show superhydrophilicity derived from hydrophilic cationic ionic liquid segments through the flip-flop motion between fluoroalkyl groups and the ionic liquid segments in nancomposites when the surface environment is changed from air to water.