{"title":"LAW-IFF网络:一种边缘模糊的海流涡轮叶片附件识别的语义分割方法","authors":"Fei Qi, Tian-zheng Wang, Xiaohang Wang, Lisu Chen","doi":"10.1177/14750902231192145","DOIUrl":null,"url":null,"abstract":"Challenges exist in the power generation efficiency and safety of marine current turbines (MCTs), as the MCT blades are often attached by foreign objects when operating underwater. It is essential for the stable operation of an MCT to recognize attachments timely and accurately. However, underwater imaging suffers from blurry edges due to light attenuation and scattering. It is challenging for accurate recognition through underwater images since blurry edges result in unclear edge features. To alleviate this problem, LAW-IFF Net is proposed in this paper, which mainly contains two parts. Firstly, this paper proposes to transform the local averages of feature maps into weight matrices, namely the locally average weighting (LAW) mechanism. It is intended to alleviate the edge gradient reduction caused by blurry edges. Secondly, the proposed improved feature fusion (IFF) mechanism aims to overcome the deviation caused by the feature fusion of different attention branches based on spatial attention. At the same time, the lightweight networks are combined with the proposed method to improve the computation speed and ensure the timeliness of recognition. Experimental results on the MCT dataset show the superiority of the proposed method in terms of accuracy and speed of attachment recognition in images with blurry edges. The experimental results on publicly available datasets show the applicability of the proposed method to other underwater images.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LAW-IFF Net: A semantic segmentation method for recognition of marine current turbine blade attachments under blurry edges\",\"authors\":\"Fei Qi, Tian-zheng Wang, Xiaohang Wang, Lisu Chen\",\"doi\":\"10.1177/14750902231192145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Challenges exist in the power generation efficiency and safety of marine current turbines (MCTs), as the MCT blades are often attached by foreign objects when operating underwater. It is essential for the stable operation of an MCT to recognize attachments timely and accurately. However, underwater imaging suffers from blurry edges due to light attenuation and scattering. It is challenging for accurate recognition through underwater images since blurry edges result in unclear edge features. To alleviate this problem, LAW-IFF Net is proposed in this paper, which mainly contains two parts. Firstly, this paper proposes to transform the local averages of feature maps into weight matrices, namely the locally average weighting (LAW) mechanism. It is intended to alleviate the edge gradient reduction caused by blurry edges. Secondly, the proposed improved feature fusion (IFF) mechanism aims to overcome the deviation caused by the feature fusion of different attention branches based on spatial attention. At the same time, the lightweight networks are combined with the proposed method to improve the computation speed and ensure the timeliness of recognition. Experimental results on the MCT dataset show the superiority of the proposed method in terms of accuracy and speed of attachment recognition in images with blurry edges. The experimental results on publicly available datasets show the applicability of the proposed method to other underwater images.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/14750902231192145\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14750902231192145","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
LAW-IFF Net: A semantic segmentation method for recognition of marine current turbine blade attachments under blurry edges
Challenges exist in the power generation efficiency and safety of marine current turbines (MCTs), as the MCT blades are often attached by foreign objects when operating underwater. It is essential for the stable operation of an MCT to recognize attachments timely and accurately. However, underwater imaging suffers from blurry edges due to light attenuation and scattering. It is challenging for accurate recognition through underwater images since blurry edges result in unclear edge features. To alleviate this problem, LAW-IFF Net is proposed in this paper, which mainly contains two parts. Firstly, this paper proposes to transform the local averages of feature maps into weight matrices, namely the locally average weighting (LAW) mechanism. It is intended to alleviate the edge gradient reduction caused by blurry edges. Secondly, the proposed improved feature fusion (IFF) mechanism aims to overcome the deviation caused by the feature fusion of different attention branches based on spatial attention. At the same time, the lightweight networks are combined with the proposed method to improve the computation speed and ensure the timeliness of recognition. Experimental results on the MCT dataset show the superiority of the proposed method in terms of accuracy and speed of attachment recognition in images with blurry edges. The experimental results on publicly available datasets show the applicability of the proposed method to other underwater images.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.