涉及Charlier多项式的Szász型算子导数的收敛性

IF 1.3 Q3 COMPUTER SCIENCE, THEORY & METHODS
P. Agrawal, Thakur Ashok K. Sinha, Avinash Sharma
{"title":"涉及Charlier多项式的Szász型算子导数的收敛性","authors":"P. Agrawal, Thakur Ashok K. Sinha, Avinash Sharma","doi":"10.3934/mfc.2021016","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>The paper deals with the approximation of first order derivative of a function by the first order derivative of Szász-type operators based on Charlier polynomials introduced by Varma and Taşdelen [<xref ref-type=\"bibr\" rid=\"b20\">20</xref>]. The uniform convergence theorem, Voronovskaja type asymptotic theorem and an estimate of error in terms of the second order modulus of continuity of the derivative of the function are investigated. Further, it is shown that linear combinations of the derivative of the above operators converge to the derivative of function at a faster rate. Finally, an estimate of error in the approximation is obtained in terms of the <inline-formula><tex-math id=\"M1\">\\begin{document}$ (2k+2)th $\\end{document}</tex-math></inline-formula> order modulus of continuity using Steklov mean.</p>","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":"62 1","pages":"1"},"PeriodicalIF":1.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Convergence of derivative of Szász type operators involving Charlier polynomials\",\"authors\":\"P. Agrawal, Thakur Ashok K. Sinha, Avinash Sharma\",\"doi\":\"10.3934/mfc.2021016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>The paper deals with the approximation of first order derivative of a function by the first order derivative of Szász-type operators based on Charlier polynomials introduced by Varma and Taşdelen [<xref ref-type=\\\"bibr\\\" rid=\\\"b20\\\">20</xref>]. The uniform convergence theorem, Voronovskaja type asymptotic theorem and an estimate of error in terms of the second order modulus of continuity of the derivative of the function are investigated. Further, it is shown that linear combinations of the derivative of the above operators converge to the derivative of function at a faster rate. Finally, an estimate of error in the approximation is obtained in terms of the <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ (2k+2)th $\\\\end{document}</tex-math></inline-formula> order modulus of continuity using Steklov mean.</p>\",\"PeriodicalId\":93334,\"journal\":{\"name\":\"Mathematical foundations of computing\",\"volume\":\"62 1\",\"pages\":\"1\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical foundations of computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/mfc.2021016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical foundations of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/mfc.2021016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 4

摘要

The paper deals with the approximation of first order derivative of a function by the first order derivative of Szász-type operators based on Charlier polynomials introduced by Varma and Taşdelen [20]. The uniform convergence theorem, Voronovskaja type asymptotic theorem and an estimate of error in terms of the second order modulus of continuity of the derivative of the function are investigated. Further, it is shown that linear combinations of the derivative of the above operators converge to the derivative of function at a faster rate. Finally, an estimate of error in the approximation is obtained in terms of the \begin{document}$ (2k+2)th $\end{document} order modulus of continuity using Steklov mean.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence of derivative of Szász type operators involving Charlier polynomials

The paper deals with the approximation of first order derivative of a function by the first order derivative of Szász-type operators based on Charlier polynomials introduced by Varma and Taşdelen [20]. The uniform convergence theorem, Voronovskaja type asymptotic theorem and an estimate of error in terms of the second order modulus of continuity of the derivative of the function are investigated. Further, it is shown that linear combinations of the derivative of the above operators converge to the derivative of function at a faster rate. Finally, an estimate of error in the approximation is obtained in terms of the \begin{document}$ (2k+2)th $\end{document} order modulus of continuity using Steklov mean.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信