基于统计线性回归和核方法的预测性维修决策

Tung Le, Ming Luo, Junhong Zhou, H. Chan
{"title":"基于统计线性回归和核方法的预测性维修决策","authors":"Tung Le, Ming Luo, Junhong Zhou, H. Chan","doi":"10.1109/ETFA.2014.7005357","DOIUrl":null,"url":null,"abstract":"In this paper, we develop a predictive maintenance (PdM) method to determine the most effective time to apply maintenance to an equipment and study its application to a real semiconductor etching chamber. More specifically, we first apply linear regression to predict the (output) equipment health condition from the (input) operational parameters. This choice of linear model also allows us to propose an algorithm to reduce the number of operational parameters to be monitored for PdM purposes using t-statistics. Then, we follow a cross-validation based procedure to generate prediction error samples and apply a kernel method to construct the corresponding probability density function of the prediction error. Finally, the PdM decision can be made based on the likelihood of the predicted health condition exceeding a certain maintenance threshold. Our analysis using real data from a semiconductor etching chamber shows that the proposed PdM decision with the reduced dimension linear regression performs comparably to the one using full-scale linear model and can be used for better maintenance planning compared to the existing practice of fixed-schedule maintenance.","PeriodicalId":20477,"journal":{"name":"Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA)","volume":"4 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Predictive maintenance decision using statistical linear regression and kernel methods\",\"authors\":\"Tung Le, Ming Luo, Junhong Zhou, H. Chan\",\"doi\":\"10.1109/ETFA.2014.7005357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we develop a predictive maintenance (PdM) method to determine the most effective time to apply maintenance to an equipment and study its application to a real semiconductor etching chamber. More specifically, we first apply linear regression to predict the (output) equipment health condition from the (input) operational parameters. This choice of linear model also allows us to propose an algorithm to reduce the number of operational parameters to be monitored for PdM purposes using t-statistics. Then, we follow a cross-validation based procedure to generate prediction error samples and apply a kernel method to construct the corresponding probability density function of the prediction error. Finally, the PdM decision can be made based on the likelihood of the predicted health condition exceeding a certain maintenance threshold. Our analysis using real data from a semiconductor etching chamber shows that the proposed PdM decision with the reduced dimension linear regression performs comparably to the one using full-scale linear model and can be used for better maintenance planning compared to the existing practice of fixed-schedule maintenance.\",\"PeriodicalId\":20477,\"journal\":{\"name\":\"Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA)\",\"volume\":\"4 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETFA.2014.7005357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2014.7005357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

在本文中,我们开发了一种预测维护(PdM)方法来确定对设备进行维护的最有效时间,并研究了其在实际半导体蚀刻室中的应用。更具体地说,我们首先应用线性回归从(输入)运行参数预测(输出)设备健康状况。这种线性模型的选择还允许我们提出一种算法,以减少使用t统计量监测PdM目的的操作参数的数量。然后,我们遵循基于交叉验证的过程生成预测误差样本,并应用核方法构造相应的预测误差概率密度函数。最后,可以根据预测的健康状况超过某个维护阈值的可能性做出PdM决策。我们使用半导体蚀刻室的实际数据进行分析,结果表明,采用降维线性回归的PdM决策与使用全尺寸线性模型的PdM决策相当,并且与现有的固定计划维护实践相比,可以用于更好的维护计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predictive maintenance decision using statistical linear regression and kernel methods
In this paper, we develop a predictive maintenance (PdM) method to determine the most effective time to apply maintenance to an equipment and study its application to a real semiconductor etching chamber. More specifically, we first apply linear regression to predict the (output) equipment health condition from the (input) operational parameters. This choice of linear model also allows us to propose an algorithm to reduce the number of operational parameters to be monitored for PdM purposes using t-statistics. Then, we follow a cross-validation based procedure to generate prediction error samples and apply a kernel method to construct the corresponding probability density function of the prediction error. Finally, the PdM decision can be made based on the likelihood of the predicted health condition exceeding a certain maintenance threshold. Our analysis using real data from a semiconductor etching chamber shows that the proposed PdM decision with the reduced dimension linear regression performs comparably to the one using full-scale linear model and can be used for better maintenance planning compared to the existing practice of fixed-schedule maintenance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信