{"title":"二苯基氧化膦结合醚键增强热封异构体共聚酰亚胺薄膜的耐原子氧性","authors":"Hongjiang Ni, Xiaoke Yang, Jun Li, Daijun Zhang, Jingang Liu, Shi-yong Yang, Xiang-bao Chen","doi":"10.1177/87560879221102635","DOIUrl":null,"url":null,"abstract":"Heat-sealable isomeric co-polyimide (CPI) films with enhanced atomic oxygen (AO) resistance and mechanical strength were synthesized from 2,3,3′,4′-oxydiphthalic anhydride (aODPA), 4,4′-oxydianiline (ODA), and 2,5-bis [(4-aminophenoxy)phenyl]diphenylphosphine oxide (BADPO). We investigated how the molecular structure and diamine ratio affected the thermal properties, solubility, mechanical properties, AO resistance and heat-sealability. The diphenylphosphine oxide (DPO) side group decreased the CPI film mechanical strength and its higher ODA reactivity increased the molecular weight. At 10 mol% ODA in the aODPA-BADPO system, the CPI film exhibited increased tensile strength with no detriment to the AO resistance. Meanwhile, the CPI films demonstrated good heat-sealability indicated by a completely merged interface after heat sealing.","PeriodicalId":16823,"journal":{"name":"Journal of Plastic Film & Sheeting","volume":"40 1","pages":"80 - 101"},"PeriodicalIF":2.1000,"publicationDate":"2022-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Enhancement of atomic oxygen resistance for heat-sealable isomeric co-polyimide films by combining ether linkage with diphenylphosphine oxide\",\"authors\":\"Hongjiang Ni, Xiaoke Yang, Jun Li, Daijun Zhang, Jingang Liu, Shi-yong Yang, Xiang-bao Chen\",\"doi\":\"10.1177/87560879221102635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heat-sealable isomeric co-polyimide (CPI) films with enhanced atomic oxygen (AO) resistance and mechanical strength were synthesized from 2,3,3′,4′-oxydiphthalic anhydride (aODPA), 4,4′-oxydianiline (ODA), and 2,5-bis [(4-aminophenoxy)phenyl]diphenylphosphine oxide (BADPO). We investigated how the molecular structure and diamine ratio affected the thermal properties, solubility, mechanical properties, AO resistance and heat-sealability. The diphenylphosphine oxide (DPO) side group decreased the CPI film mechanical strength and its higher ODA reactivity increased the molecular weight. At 10 mol% ODA in the aODPA-BADPO system, the CPI film exhibited increased tensile strength with no detriment to the AO resistance. Meanwhile, the CPI films demonstrated good heat-sealability indicated by a completely merged interface after heat sealing.\",\"PeriodicalId\":16823,\"journal\":{\"name\":\"Journal of Plastic Film & Sheeting\",\"volume\":\"40 1\",\"pages\":\"80 - 101\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plastic Film & Sheeting\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/87560879221102635\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plastic Film & Sheeting","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/87560879221102635","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
Enhancement of atomic oxygen resistance for heat-sealable isomeric co-polyimide films by combining ether linkage with diphenylphosphine oxide
Heat-sealable isomeric co-polyimide (CPI) films with enhanced atomic oxygen (AO) resistance and mechanical strength were synthesized from 2,3,3′,4′-oxydiphthalic anhydride (aODPA), 4,4′-oxydianiline (ODA), and 2,5-bis [(4-aminophenoxy)phenyl]diphenylphosphine oxide (BADPO). We investigated how the molecular structure and diamine ratio affected the thermal properties, solubility, mechanical properties, AO resistance and heat-sealability. The diphenylphosphine oxide (DPO) side group decreased the CPI film mechanical strength and its higher ODA reactivity increased the molecular weight. At 10 mol% ODA in the aODPA-BADPO system, the CPI film exhibited increased tensile strength with no detriment to the AO resistance. Meanwhile, the CPI films demonstrated good heat-sealability indicated by a completely merged interface after heat sealing.
期刊介绍:
The Journal of Plastic Film and Sheeting improves communication concerning plastic film and sheeting with major emphasis on the propogation of knowledge which will serve to advance the science and technology of these products and thus better serve industry and the ultimate consumer. The journal reports on the wide variety of advances that are rapidly taking place in the technology of plastic film and sheeting. This journal is a member of the Committee on Publication Ethics (COPE).