{"title":"可测截面空间中的乘法算子","authors":"M. Pliev","doi":"10.12732/ijam.v32i5.11","DOIUrl":null,"url":null,"abstract":"Abstract: In this article we consider linear operators in measurable section spaces. Let X be a liftable measurable bundle of Banach spaces and E be an order continuous Köthe function space over a finite measure space (A,Σ, μ). We prove that a linear continuous operator T in a measurable sections space E(X ) is a multiplication operator (by a function in L∞(μ)) if and only if the equality T (g〈f, φ〉φ) = g〈T (f), φ〉φ) holds for every g ∈ L∞(μ), f ∈ E(X ), φ ∈ L∞(X ) and φ ⋆ ∈ L∞(X ).","PeriodicalId":14365,"journal":{"name":"International journal of pure and applied mathematics","volume":"43 1","pages":"847"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MULTIPLICATION OPERATORS IN MEASURABLE SECTIONS SPACES\",\"authors\":\"M. Pliev\",\"doi\":\"10.12732/ijam.v32i5.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract: In this article we consider linear operators in measurable section spaces. Let X be a liftable measurable bundle of Banach spaces and E be an order continuous Köthe function space over a finite measure space (A,Σ, μ). We prove that a linear continuous operator T in a measurable sections space E(X ) is a multiplication operator (by a function in L∞(μ)) if and only if the equality T (g〈f, φ〉φ) = g〈T (f), φ〉φ) holds for every g ∈ L∞(μ), f ∈ E(X ), φ ∈ L∞(X ) and φ ⋆ ∈ L∞(X ).\",\"PeriodicalId\":14365,\"journal\":{\"name\":\"International journal of pure and applied mathematics\",\"volume\":\"43 1\",\"pages\":\"847\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of pure and applied mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12732/ijam.v32i5.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of pure and applied mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12732/ijam.v32i5.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
摘要:本文考虑可测截面空间中的线性算子。设X是Banach空间的可举可测束,E是有限测度空间(a,Σ, μ)上的阶连续Köthe函数空间。证明了可测截面空间E(X)中的线性连续算子T是一个乘算子(乘L∞(μ)上的一个函数),当且仅当等式T (g < f, φ > φ) = g < T (f), φ > φ)对每个g∈L∞(μ), f∈E(X), φ∈L∞(X), φ∈L∞(X), φ∈L∞(X)成立。
MULTIPLICATION OPERATORS IN MEASURABLE SECTIONS SPACES
Abstract: In this article we consider linear operators in measurable section spaces. Let X be a liftable measurable bundle of Banach spaces and E be an order continuous Köthe function space over a finite measure space (A,Σ, μ). We prove that a linear continuous operator T in a measurable sections space E(X ) is a multiplication operator (by a function in L∞(μ)) if and only if the equality T (g〈f, φ〉φ) = g〈T (f), φ〉φ) holds for every g ∈ L∞(μ), f ∈ E(X ), φ ∈ L∞(X ) and φ ⋆ ∈ L∞(X ).