社会公平聚类的严格FPT近似

Dishant Goyal, Ragesh Jaiswal
{"title":"社会公平聚类的严格FPT近似","authors":"Dishant Goyal, Ragesh Jaiswal","doi":"10.2139/ssrn.4226483","DOIUrl":null,"url":null,"abstract":"In this work, we study the socially fair $k$-median/$k$-means problem. We are given a set of points $P$ in a metric space $\\mathcal{X}$ with a distance function $d(.,.)$. There are $\\ell$ groups: $P_1,\\dotsc,P_{\\ell} \\subseteq P$. We are also given a set $F$ of feasible centers in $\\mathcal{X}$. The goal in the socially fair $k$-median problem is to find a set $C \\subseteq F$ of $k$ centers that minimizes the maximum average cost over all the groups. That is, find $C$ that minimizes the objective function $\\Phi(C,P) \\equiv \\max_{j} \\Big\\{ \\sum_{x \\in P_j} d(C,x)/|P_j| \\Big\\}$, where $d(C,x)$ is the distance of $x$ to the closest center in $C$. The socially fair $k$-means problem is defined similarly by using squared distances, i.e., $d^{2}(.,.)$ instead of $d(.,.)$. The current best approximation guarantee for both the problems is $O\\left( \\frac{\\log \\ell}{\\log \\log \\ell} \\right)$ due to Makarychev and Vakilian [COLT 2021]. In this work, we study the fixed parameter tractability of the problems with respect to parameter $k$. We design $(3+\\varepsilon)$ and $(9 + \\varepsilon)$ approximation algorithms for the socially fair $k$-median and $k$-means problems, respectively, in FPT (fixed parameter tractable) time $f(k,\\varepsilon) \\cdot n^{O(1)}$, where $f(k,\\varepsilon) = (k/\\varepsilon)^{{O}(k)}$ and $n = |P \\cup F|$. Furthermore, we show that if Gap-ETH holds, then better approximation guarantees are not possible in FPT time.","PeriodicalId":13545,"journal":{"name":"Inf. Process. Lett.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Tight FPT Approximation for Socially Fair Clustering\",\"authors\":\"Dishant Goyal, Ragesh Jaiswal\",\"doi\":\"10.2139/ssrn.4226483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we study the socially fair $k$-median/$k$-means problem. We are given a set of points $P$ in a metric space $\\\\mathcal{X}$ with a distance function $d(.,.)$. There are $\\\\ell$ groups: $P_1,\\\\dotsc,P_{\\\\ell} \\\\subseteq P$. We are also given a set $F$ of feasible centers in $\\\\mathcal{X}$. The goal in the socially fair $k$-median problem is to find a set $C \\\\subseteq F$ of $k$ centers that minimizes the maximum average cost over all the groups. That is, find $C$ that minimizes the objective function $\\\\Phi(C,P) \\\\equiv \\\\max_{j} \\\\Big\\\\{ \\\\sum_{x \\\\in P_j} d(C,x)/|P_j| \\\\Big\\\\}$, where $d(C,x)$ is the distance of $x$ to the closest center in $C$. The socially fair $k$-means problem is defined similarly by using squared distances, i.e., $d^{2}(.,.)$ instead of $d(.,.)$. The current best approximation guarantee for both the problems is $O\\\\left( \\\\frac{\\\\log \\\\ell}{\\\\log \\\\log \\\\ell} \\\\right)$ due to Makarychev and Vakilian [COLT 2021]. In this work, we study the fixed parameter tractability of the problems with respect to parameter $k$. We design $(3+\\\\varepsilon)$ and $(9 + \\\\varepsilon)$ approximation algorithms for the socially fair $k$-median and $k$-means problems, respectively, in FPT (fixed parameter tractable) time $f(k,\\\\varepsilon) \\\\cdot n^{O(1)}$, where $f(k,\\\\varepsilon) = (k/\\\\varepsilon)^{{O}(k)}$ and $n = |P \\\\cup F|$. Furthermore, we show that if Gap-ETH holds, then better approximation guarantees are not possible in FPT time.\",\"PeriodicalId\":13545,\"journal\":{\"name\":\"Inf. Process. Lett.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inf. Process. Lett.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.4226483\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inf. Process. Lett.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.4226483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在这项工作中,我们研究了社会公平$k$ -中位数/ $k$ -均值问题。我们在度量空间$\mathcal{X}$中给定一组点$P$,其距离函数为$d(.,.)$。有$\ell$组:$P_1,\dotsc,P_{\ell} \subseteq P$。并给出了$\mathcal{X}$中可行中心的一组$F$。社会公平$k$ -中值问题的目标是找到一组$C \subseteq F$的$k$中心,使所有群体的最大平均成本最小化。也就是说,找到最小化目标函数$\Phi(C,P) \equiv \max_{j} \Big\{ \sum_{x \in P_j} d(C,x)/|P_j| \Big\}$的$C$,其中$d(C,x)$是$x$到$C$中最近的中心的距离。社会公平$k$ -均值问题同样通过使用平方距离来定义,即$d^{2}(.,.)$而不是$d(.,.)$。目前这两个问题的最佳近似保证是$O\left( \frac{\log \ell}{\log \log \ell} \right)$,这是由Makarychev和Vakilian提出的[COLT 2021]。在这项工作中,我们研究了关于参数$k$的问题的固定参数可跟踪性。在FPT(固定参数可处理)时间$f(k,\varepsilon) \cdot n^{O(1)}$,我们分别为社会公平的$k$ -中位数和$k$ -均值问题设计了$(3+\varepsilon)$和$(9 + \varepsilon)$近似算法,其中$f(k,\varepsilon) = (k/\varepsilon)^{{O}(k)}$和$n = |P \cup F|$。进一步,我们证明了如果Gap-ETH成立,那么在FPT时间内不可能有更好的近似保证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tight FPT Approximation for Socially Fair Clustering
In this work, we study the socially fair $k$-median/$k$-means problem. We are given a set of points $P$ in a metric space $\mathcal{X}$ with a distance function $d(.,.)$. There are $\ell$ groups: $P_1,\dotsc,P_{\ell} \subseteq P$. We are also given a set $F$ of feasible centers in $\mathcal{X}$. The goal in the socially fair $k$-median problem is to find a set $C \subseteq F$ of $k$ centers that minimizes the maximum average cost over all the groups. That is, find $C$ that minimizes the objective function $\Phi(C,P) \equiv \max_{j} \Big\{ \sum_{x \in P_j} d(C,x)/|P_j| \Big\}$, where $d(C,x)$ is the distance of $x$ to the closest center in $C$. The socially fair $k$-means problem is defined similarly by using squared distances, i.e., $d^{2}(.,.)$ instead of $d(.,.)$. The current best approximation guarantee for both the problems is $O\left( \frac{\log \ell}{\log \log \ell} \right)$ due to Makarychev and Vakilian [COLT 2021]. In this work, we study the fixed parameter tractability of the problems with respect to parameter $k$. We design $(3+\varepsilon)$ and $(9 + \varepsilon)$ approximation algorithms for the socially fair $k$-median and $k$-means problems, respectively, in FPT (fixed parameter tractable) time $f(k,\varepsilon) \cdot n^{O(1)}$, where $f(k,\varepsilon) = (k/\varepsilon)^{{O}(k)}$ and $n = |P \cup F|$. Furthermore, we show that if Gap-ETH holds, then better approximation guarantees are not possible in FPT time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信