基于运动预测的FPSO系泊线故障检测

Amir Muhammed Saad, Florian Schopp, Asdrubal N. Queiroz Filho, R. D. S. Cunha, Ismael H. F. Santos, Rodrigo A. Barreira, E. Tannuri, E. Gomi, A. H. R. Costa
{"title":"基于运动预测的FPSO系泊线故障检测","authors":"Amir Muhammed Saad, Florian Schopp, Asdrubal N. Queiroz Filho, R. D. S. Cunha, Ismael H. F. Santos, Rodrigo A. Barreira, E. Tannuri, E. Gomi, A. H. R. Costa","doi":"10.1115/omae2021-62413","DOIUrl":null,"url":null,"abstract":"\n A failure in the mooring line of a platform, if not detected quickly, can cause a riser system failure, extended production downtime, or even environmental damages. Therefore, integrity management and timely detection of mooring failure for floating platforms are critical. In this paper, we propose a new model for an ANN-based mooring failure detection system. The proposal’s idea is to train a Multilayer Perceptron (MLP) to estimate the platform’s future motion based on its motion’s temporal data without failure. A classifier then indicates whether or not there is a failure in the mooring system based on the difference between the predicted and the measured motion. The results with several tests of the implemented system show that our proposal can correctly predict the motion of the platform in most environmental conditions. The system shows a precision, accuracy and F1-score of 99.88%, 99.99% and 99.94%, respectively, for detecting changes in platform motion in near real-time, quickly signaling a possible breakage of mooring lines.","PeriodicalId":23502,"journal":{"name":"Volume 1: Offshore Technology","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FPSO Mooring Line Failure Detection Based on Predicted Motion\",\"authors\":\"Amir Muhammed Saad, Florian Schopp, Asdrubal N. Queiroz Filho, R. D. S. Cunha, Ismael H. F. Santos, Rodrigo A. Barreira, E. Tannuri, E. Gomi, A. H. R. Costa\",\"doi\":\"10.1115/omae2021-62413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A failure in the mooring line of a platform, if not detected quickly, can cause a riser system failure, extended production downtime, or even environmental damages. Therefore, integrity management and timely detection of mooring failure for floating platforms are critical. In this paper, we propose a new model for an ANN-based mooring failure detection system. The proposal’s idea is to train a Multilayer Perceptron (MLP) to estimate the platform’s future motion based on its motion’s temporal data without failure. A classifier then indicates whether or not there is a failure in the mooring system based on the difference between the predicted and the measured motion. The results with several tests of the implemented system show that our proposal can correctly predict the motion of the platform in most environmental conditions. The system shows a precision, accuracy and F1-score of 99.88%, 99.99% and 99.94%, respectively, for detecting changes in platform motion in near real-time, quickly signaling a possible breakage of mooring lines.\",\"PeriodicalId\":23502,\"journal\":{\"name\":\"Volume 1: Offshore Technology\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Offshore Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/omae2021-62413\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Offshore Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2021-62413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如果不能快速检测到平台系泊线的故障,可能会导致立管系统故障,延长生产停机时间,甚至破坏环境。因此,对浮式平台进行完整性管理和及时发现系泊故障至关重要。本文提出了一种新的基于人工神经网络的系泊故障检测系统模型。该提案的想法是训练一个多层感知器(MLP),根据其运动的时间数据无故障地估计平台的未来运动。然后,分类器根据预测运动和测量运动之间的差异指示系泊系统是否存在故障。系统的多次测试结果表明,该方法能够正确预测平台在大多数环境条件下的运动。该系统在近实时检测平台运动变化方面的精度、准确度和f1评分分别为99.88%、99.99%和99.94%,能够快速发出可能发生的系泊线断裂的信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FPSO Mooring Line Failure Detection Based on Predicted Motion
A failure in the mooring line of a platform, if not detected quickly, can cause a riser system failure, extended production downtime, or even environmental damages. Therefore, integrity management and timely detection of mooring failure for floating platforms are critical. In this paper, we propose a new model for an ANN-based mooring failure detection system. The proposal’s idea is to train a Multilayer Perceptron (MLP) to estimate the platform’s future motion based on its motion’s temporal data without failure. A classifier then indicates whether or not there is a failure in the mooring system based on the difference between the predicted and the measured motion. The results with several tests of the implemented system show that our proposal can correctly predict the motion of the platform in most environmental conditions. The system shows a precision, accuracy and F1-score of 99.88%, 99.99% and 99.94%, respectively, for detecting changes in platform motion in near real-time, quickly signaling a possible breakage of mooring lines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信